MATH 225 Module 2 Lecture b Course Slides

Coordinates With Respect to an Orthonormal Basis

Theorem 7.1.2

If $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthonormal basis for \mathbb{R}^n , then the i-th coordinate of a vector $\vec{x} \in \mathbb{R}^n$ with respect to \mathcal{B} is

$$b_i = \vec{x} \cdot \vec{v}_i$$

It follows that \vec{x} can be written as

$$\vec{x} = (\vec{x} \cdot \vec{v}_1)\vec{v}_1 + \dots + (\vec{x} \cdot \vec{v}_n)\vec{v}_n$$

Proof

The proof of this is similar to the proof that orthogonal sets are linearly independent, except that instead of looking at a linear combination that is equal to the zero vector, we now look at a linear combination that is equal to \vec{x} . Since \vec{B} is a basis for \mathbb{R}^n , we know that there are scalars b_1, \ldots, b_n such that

$$b_1\vec{v}_1 + \cdots + b_n\vec{v}_n = \vec{x}$$

Then, for every $1 \le i \le n$, we can take the dot product of \vec{v}_i with both sides of this equation, getting

$$\begin{split} (b_1 \vec{v}_1 + \cdots + b_n \vec{v}_n) \cdot \vec{v}_i &= \vec{x} \cdot \vec{v}_i \\ (b_1 \vec{v}_1) \cdot \vec{v}_i + \cdots + (b_n \vec{v}_n) \cdot \vec{v}_i &= \vec{x} \cdot \vec{v}_i \\ b_1 (\vec{v}_1 \cdot \vec{v}_i) + \cdots + b_i (\vec{v}_i \cdot \vec{v}_i) + \cdots + b_n (\vec{v}_n \cdot \vec{v}_i) &= \vec{x} \cdot \vec{v}_i \\ b_1 (0) + \cdots + b_i (||\vec{v}_i||^2) + \cdots + b_n (0) &= \vec{x} \cdot \vec{v}_i \\ b_i &= \vec{x} \cdot \vec{v}_i \end{split}$$

Coordinates With Respect to an Orthonormal Basis

Example

To find the coordinates of $\vec{x} = \begin{bmatrix} -4 \\ -7 \end{bmatrix}$ with respect to the orthonormal basis $\mathcal{B}_1 = \left\{ \begin{bmatrix} 2/\sqrt{13} \\ -3/\sqrt{13} \end{bmatrix}, \begin{bmatrix} 6/\sqrt{52} \\ 4/\sqrt{52} \end{bmatrix} \right\}$ for \mathbb{R}^2 , we calculate them individually.

$$b_1 = \begin{bmatrix} -4 \\ -7 \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{13} \\ -3/\sqrt{13} \end{bmatrix} = \frac{-8}{\sqrt{13}} + \frac{21}{\sqrt{13}} = \frac{13}{\sqrt{13}}$$
$$b_2 = \begin{bmatrix} -4 \\ -7 \end{bmatrix} \cdot \begin{bmatrix} 6/\sqrt{52} \\ 4/\sqrt{52} \end{bmatrix} = \frac{-24}{\sqrt{52}} - \frac{28}{\sqrt{52}} = -\frac{52}{\sqrt{52}}$$

And so we see that $[\vec{x}]_{B_1} = \begin{bmatrix} 13/\sqrt{13} \\ -52/\sqrt{52} \end{bmatrix}$

To find the coordinates of $\vec{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ with respect to the orthonormal basis $B_2 = \left\{ \begin{bmatrix} 3/\sqrt{26} \\ 1/\sqrt{26} \\ 4/\sqrt{26} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}, \begin{bmatrix} 5/\sqrt{78} \\ -7/\sqrt{78} \\ -2/\sqrt{78} \end{bmatrix} \right\}$

for \mathbb{R}^3 , we again calculate them individually.

MATH 225 Module 2 Lecture b Course Slides

Coordinates With Respect to an Orthonormal Basis

$$b_{1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 3/\sqrt{26}\\1/\sqrt{26}\\4/\sqrt{26} \end{bmatrix} = \frac{3}{\sqrt{26}} + \frac{2}{\sqrt{26}} + \frac{12}{\sqrt{26}} = \frac{17}{\sqrt{26}}$$

$$b_{2} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} -1/\sqrt{3}\\-1/\sqrt{3}\\1/\sqrt{3} \end{bmatrix} = -\frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}} + \frac{3}{\sqrt{3}} = 0$$

$$b_{3} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 5/\sqrt{78}\\-7/\sqrt{78}\\2/\sqrt{78} \end{bmatrix} = \frac{5}{\sqrt{78}} - \frac{14}{\sqrt{78}} - \frac{6}{\sqrt{78}} = -\frac{15}{\sqrt{78}}$$

And so we see that
$$[\vec{y}]_{\mathcal{B}_2} = \begin{bmatrix} 17/\sqrt{26} \\ 0 \\ -15/\sqrt{78} \end{bmatrix}$$

Coordinates With Respect to an Orthonormal Basis

Theorem 7.1.a

Let \vec{x} and \vec{y} be vectors in \mathbb{R}^n , let $\mathcal{B}=\{\vec{v}_1,\dots,\vec{v}_n\}$ be an orthonormal basis for \mathbb{R}^n , and let $[\vec{x}]_{\mathcal{B}}=\begin{bmatrix}x_1\\ \vdots\\ x_n\end{bmatrix}$ and

$$[ec{y}]_{\mathcal{B}} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix}$$
 . Then

1.
$$ec{x} \cdot ec{y} = [ec{x}]_{\mathcal{B}} \cdot [ec{y}]_{\mathcal{B}}$$
 and

2.
$$||\vec{x}|| = ||[\vec{x}]_{\mathcal{B}}||$$

Coordinates With Respect to an Orthonormal Basis

Proof

1. We see that

$$\begin{split} \vec{x} \cdot \vec{y} &= (x_1 \vec{v}_1 + \dots + x_n \vec{v}_n) \cdot (y_1 \vec{v}_1 + \dots + y_n \vec{v}_n) \\ &= x_1 \vec{v}_1 \cdot (y_1 \vec{v}_1 + \dots + y_n \vec{v}_n) + \dots + x_n \vec{v}_n \cdot (y_1 \vec{v}_1 + \dots + y_n \vec{v}_n) \\ &= (x_1 \vec{v}_1) \cdot (y_1 \vec{v}_1) + \dots + (x_1 \vec{v}_1) \cdot (y_n \vec{v}_n) \\ &+ \dots + (x_n \vec{v}_n) \cdot (y_1 \vec{v}_1) + \dots + (x_n \vec{v}_n) \cdot (y_n \vec{v}_n) \\ &= x_1 y_1 (\vec{v}_1 \cdot \vec{v}_1) + \dots + (x_1 y_n) (\vec{v}_1 \cdot \vec{v}_n) + x_2 y_1 (\vec{v}_2 \cdot \vec{v}_1) + \dots + x_2 y_n (\vec{v}_2 \cdot \vec{v}_n) \\ &+ \dots + x_n y_1 (\vec{v}_n \cdot \vec{v}_1) + \dots + x_n y_n (\vec{v}_n \cdot \vec{v}_n) \\ &= x_1 y_1 + x_2 y_2 + \dots + x_n y_n \\ \\ \text{Since } \vec{v}_i \cdot \vec{v}_i &= ||\vec{v}_i||^2 = 1^2 = 1 \text{ and } \vec{v}_i \cdot \vec{v}_j = 0 \text{ when } i \neq j. \end{split}$$
 And so we have that $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = [\vec{x}]_{\mathcal{B}} \cdot [\vec{y}]_{\mathcal{B}}. \end{split}$

Coordinates With Respect to an Orthonormal Basis

Proof

(2.) follows from (1.), since $||x||^2 =$

$$\vec{x} \cdot \vec{x} = [\vec{x}]_B \cdot [\vec{x}]_B = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1^2 + \dots + x_n^2$$

And so we have $||x|| = \sqrt{x_1^2 + \dots + x_n^2} = ||[\vec{x}]_B||$