MATH 225 Module 1 Lecture k Course Slides (Last Updated: December 10, 2013)

Extending a Linearly Independent Subset to a Basis

Theorem 4.3.b

If $\mathcal{T} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a linearly independent set, and if $\mathbf{w} \notin \operatorname{Span} \mathcal{T}$, then $\{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}\}$ is also a linearly independent set.

Extending a Linearly Independent Subset to a Basis

Proof

Suppose that $\mathcal{T} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a linearly independent set, and that $\mathbf{w} \notin \operatorname{Span} \mathcal{T}$. To see that $\{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}\}$ is linearly independent, we will look for solutions to the equation

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k + t_{k+1}\mathbf{w} = \mathbf{0}$$

Suppose, by way of contradiction, that $t_{k+1} \neq 0$. Then we can divide by t_{k+1} and get

$$\frac{t_1}{t_{k+1}} \mathbf{v}_1 + \dots + \frac{t_k}{t_{k+1}} \mathbf{v}_k + \mathbf{w} = \mathbf{0}$$

which means that

$$-\frac{t_1}{t_{k+1}}\mathbf{v}_1-\cdots-\frac{t_k}{t_{k+1}}\mathbf{v}_k=\mathbf{w}$$

But this means we can write \mathbf{w} as a linear combination of the vectors in \mathcal{T} , which contradicts our choice of \mathbf{w} as not being in the span of \mathcal{T} . From this contradiction, we know that $t_{k+1}=0$. And this turns our linear independence equation into

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k + 0\mathbf{w} = \mathbf{0}$$

which is the same as

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k = \mathbf{0}$$

MATH 225 Module 1 Lecture k Course Slides (Last Updated: December 10, 2013)

Extending a Linearly Independent Subset to a Basis

Proof

And since \mathcal{T} is linearly independent, we know that the only solution to this equation is $t_1 = \ldots = t_k = 0$. As such, we have shown that the only solution to the equation

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k + t_{k+1}\mathbf{w} = \mathbf{0}$$

is
$$t_1 = \dots = t_k = t_{k+1} = 0$$
.

And this means that the set $\{v_1, \dots, v_k, w\}$ is linearly independent.

Now, the fact that our vector spaces have a finite basis does more than guarantee that our expansion process will come to an end. It actually tells us **when** our process will end. Because our basis will need to have exactly $\dim \mathbb{V}$ elements in it. We see how to use this fact in the following example.

Extending a Linearly Independent Subset to a Basis

Example

- (a) Produce a basis \mathcal{B} for the plane \mathcal{P} in \mathbb{R}^3 with equation $2x_1 + 4x_2 x_3 = 0$, and
- (b) extend the basis \mathcal{B} to a basis \mathcal{C} for \mathbb{R}^3 .

We already know that the dimension of any plane in \mathbb{R}^3 is 2, so to find a basis \mathcal{B} for \mathcal{P} , we simply need to find two linearly independent vectors on our plane.

But a set of two vectors is linearly independent whenever they are not a scalar multiple of each other. So we can quickly note that

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix} \text{ and } \vec{v}_2 = \begin{bmatrix} 2\\-1\\0 \end{bmatrix}$$

are two vectors that satisfy

$$2x_1 + 4x_2 - x_3 = 0$$

that are not scalar multiples of each other.

And thus,

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right\}$$

is a basis for \mathcal{P} .

MATH 225 Module 1 Lecture k Course Slides (Last Updated: December 10, 2013)

Extending a Linearly Independent Subset to a Basis

Example

- (a) Produce a basis \mathcal{B} for the plane \mathcal{P} in \mathbb{R}^3 with equation $2x_1 + 4x_2 x_3 = 0$, and
- (b) extend the basis \mathcal{B} to a basis \mathcal{C} for \mathbb{R}^3 .

Now, we know that the dimension of \mathbb{R}^3 is 3, so to extend B to a basis C of \mathbb{R}^3 , we simply need to find one vector not in the span of B.

But the span of \mathcal{B} is precisely the vectors on the plane \mathcal{P} . So this means we are looking for any vector not on the plane.

That is, we are looking for any vector that does **not** satisfy $2x_1 + 4x_2 - x_3 = 0$.

The vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ quickly comes to mind as such a vector.

And so we have that

$$C = \left\{ \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}_3

Extending a Linearly Independent Subset to a Basis

Theorem 4.3.4

Let $\mathbb V$ be an $\emph{n}\text{-}\text{dimensional}$ vector space. Then

- (1) A set of more than n vectors in $\mathbb V$ must be linearly dependent.
- (2) A set of fewer than n vectors cannot span \mathbb{V} .
- (3) A set with n elements of \mathbb{V} is a spanning set for \mathbb{V} if and only if it is linearly independent.
- (3) will be referred to as the "two out of three rule"

Three features a basis must have are: spanning, linear independence, n elements.