MATH 225
Module 3 Lecture u Course Slides

Properties of Complex Inner Product Spaces

When doing the problems assigned for the previous lecture, you hopefully noticed that the standard inner product
for complex numbers is not symmetrical (that is, that (Z, W) # (W, Z)). So, right away we know that our definition of
an inner product will have to be different than the one we used for the reals.

But, hopefully you also noticed that (E W) = (ﬁu Z), so this is yet another case where we need to introduce
conjugation to extend a result from the reals to the complex numbers. Bilinearity also needs some adjustments in
the complex numbers.

Let's take a look at the definition of a (generic) inner product on C*.

Properties of Complex Inner Product Spaces

Definition: Let ¥ be a vector space over C. A complex inner product on V is a function {, ) : ¥ x V — C such
that

—y

For allz € W, we have that (z, z) is a non-negative real number, and (z,z) = 0 if and only if z = 0.
2. Forallw,z eV, (z,w) = (W,Z)
3. Forallu,v,w,z € W and all « € C we have

i (Vv+z,w) = (v,W) + (z, W)
il. (z,w+u)=(z,w)+(z,u)
ii. (az,w) = alz,w)
iv. {z,aw) = a(z, w)

Property 1 is still the same as in R", and is still referred to as being "positive definite".
Property 2 is known as the Hermitian property of the inner product (instead of the symmetric property). Because
the complex inner product is not symmetric, we cannot find a simple counterpart to bilinearity, but we can combine
the statements of property 3 into one statement as follows:
Letu,v,w,z € Vanda,f,y.d € C, and let's expand out {(au + fv, yw + dz). One use of part (i) gets us to
{au, yw + 8z) + (fv, yw + 5z)

Then we can use part (i) twice to get

(o, yw) + (au, 5z) + (Bv, yw) + (Bv, 6z)
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Properties of Complex Inner Product Spaces

Definition: Let V be a vector space over C. A complex inner product on V is a function {, ) : ¥ x ¥ — C such
that

e

. Forallz € V, we have that (z, z) is a non-negative real number, and (z,z) = 0 ifand only ifz = 0.
2. Forallw,z e V, (z, w) =m
3. Forallu,v,w,z € W and all a € C we have
i (v+z,w) = (v,w) + (z,w)
il. (z,w+u)=(z,w)+ (z,u)
iii. {az,w) = a(z,w)
iv. {z,aw) = a(z, w)

Now, we can use part (jii) four times to get
a(u,yw) + a(u, dz) + p(v, yw) + p(v, 6z)
And lastly, we use part (iv) four times to get
ay(u, W) + ad(u, z) + 7 (v, w) + (v, z)
So we see that the inner product is almost bilinear; we simply need to remember to take the conjugate of any scalar
we pull out of the right side of the inner product.

Properties of Complex Inner Product Spaces

Example
Show that the standard inner product defined on C" is a complex inner product.
Property 1: LetZ € C". Then

(Z.7) = Z};I %z = Z:;:l Izl
Since this is the sum of non-negative real numbers, it must be a non-negative real number. Moreover, the only way
to have that

@ =X 1z°=0

is to have |zj|* = O forall 1 < j < n, and since the only complex number with a modulus of 0 is 0, we see that
(Z.Z)y=0ifandonlyifZ = 0.

|2

Property 2: LetZ, w € C". Then we can use properties of the conjugate to see that
ﬁ = ELI wizj
=35
= j‘l=| Zjw;

= @w)
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Properties of Complex Inner Product Spaces

Example
Property 3i: LetV, w,7 € C". Then
V+Z,w) = E}Ll(v,— +z;)w;
= 2L VW + W
=2 W+ X W
=V, W)+ (7, W)
Property 3ii: Let i, w,Z € C". Then
Ew+i) =X 50w +u)
=X 5w + )
=2 W + 5l
=Yl 5wt E_?:l Zl;

=(Z W)+ @)

Properties of Complex Inner Product Spaces

Example
Property 3iii: Let w,z € C" and a € C. Then
(aZ, W) =Y.; 4 azw;
=a Z;l 1 %W
= afZ,w)
Property 3iv: Letw, 7 € C" and a € C. Then
(Z,aw) =37, z0w;
=35 (@ W)
=371 (@) (w;)
=a ; ]

—@al(z, o)
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Properties of Complex Inner Product Spaces
Theorem 9.5.1

Let W be a complex inner product space with inner product { , ). Then, for all w,z € V, we have
Cauchy-Schwarz Inequality: |(z, w)| < lizll llwll
Triangle Inequality: llz + wil < lizll + IIwll

For once, we cannot simply copy the proof from the proof used in the reals.

Proof (Triangle Inequality)

Note that the Triangle Inequality is equivalent to the statement
llz + wil? < (llzll + Ilwll)?

or that llz 4+ wii> — (lzll + llwl)? < 0

Let's expand the left side:

iz + wii? — (lizI? + 21zl lIwll + llwl?)

(z+w,z+w)— (z,z) — (w,w) — 2llzll llwll

= (z,z) + (z, W) + (W, ) + {w, w) — {Z, 2} — (W, w) — 2lizll llwl

= (z,w) + (w,z) — 2llzll llwll

= (z,w) + (z, w) — 2lizll llwll

= 2Re((z, w)) — 2lizll liwll

iz + wil2 — (lizll + llwll)y?

Properties of Complex Inner Product Spaces
Proof (Triangle Inequality)

So we need to show that
2Re((z, w)) — 2zl liwll < 0
which is the same as showing that
Re((z, w)) < lizll liwll

We will make use of the Cauchy-Schwarz Inequality, by first showing that
Re((z, w)) < I(z, w)l
To see this, we first note that

Iz, w)i* = (Re((z, w)))* + (Im((z, w})))*
Since (Im({(z, w)))* = 0, we see that
(Re((z, w))* < I(z, w)I*

And thus we have that

Re((z, w))l < {z, w)l
But since Re({z, w)) < IRe({z, w))l, we have shown that

Re((z,w)) < I(z, w)l
And the Cauchy-Shwarz Inequality tells us that [{z, w)l < lizll llwll, so we see that

Re((z, w)) < I{z, w)l < llzll llwll

which completes our proof of the Triangle Inequality.
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