MATH 225 Module 1 Lecture f Course Slides (Last Updated: December 10, 2013)

Subspaces

Definition: Suppose that $\mathbb V$ is a vector space, and that $\mathbb U$ is a subset of $\mathbb V$. If $\mathbb U$ is a vector space using the same definition of addition and scalar multiplication as $\mathbb V$, then $\mathbb U$ is called a subspace of $\mathbb V$.

Example

Is P_2 a subspace of P_3 ? Yes!

Since every polynomial of degree up to 2 is also a polynomial of degree up to 3, P_2 is a subset of P_3 . And we already know that P_2 is a vector space, so it is a subspace of P_3 .

However, \mathbb{R}^2 is not a subspace of \mathbb{R}^3 , since the elements of \mathbb{R}^2 have exactly two entries, while the elements of \mathbb{R}^3 have exactly three entries.

That is to say, \mathbb{R}^2 is not a subset of \mathbb{R}^3 .

Similarly, M(2, 2) is not a subspace of M(2, 3), because M(2, 2) is not a subset of M(2, 3).

Subspaces

Why Are Subspaces Important?

A subspace inherits most of the vector space axioms from its parent vector space.

For example, if $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ in \mathbb{V} , then this will continue to be true in \mathbb{U} , where \mathbb{U} is a subspace of \mathbb{V} . The properties of \mathbb{V} that are inherited by \mathbb{U} are:

- V2 Addition is associative.
- V5 Addition is commutative.
- V7 Scalar multiplication is associative.
- V8 Scalar addition is distributive.
- V9 Scalar multiplication is distributive.
- V10 Scalar multiplicative identity.

In fact, given any subset (but not necessarily a vector space) \mathbb{W} of a vector space \mathbb{V} , we know that properties V2, V5, V7, V8, V9, and V10 will hold in \mathbb{W} .

So, if we want to prove that \mathbb{W} is itself a vector space, we only need to look at properties V1, V3, V4, and V6.

Properties V1 and V6 were trivial when showing that \mathbb{R}^n , M(m,n), and P_n were vector spaces, but this property becomes much more important when we are looking at subspaces.

MATH 225 Module 1 Lecture f Course Slides

(Last Updated: December 10, 2013)

Subspaces

Example

Let $\mathbb{V} = M(2, 2)$, and let \mathbb{W} be the subset of M(2, 2) consisting of matrices with at most one non-zero entry.

So, for example,
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ are all elements of \mathbb{W} .

But let's look at the sum A + B.

We know that $A + B \in \mathbb{V}$, and even that A + B = B + A, since A and B are elements of \mathbb{V} .

But it turns out that $A + B \notin \mathbb{W}$, since

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 0 & 0 \end{bmatrix}$$

and thus, A + B has more than one non-zero entry.

Subspaces

When we are considering properties V1 and V6, we are not so much concerned with the existence of x + y and sx, as we are that these elements are contained in our smaller set.

Similarly, our concern with V3 and V4 is not that 0 and -x exist and satisfy their respective properties, but rather that they are actually elements of \mathbb{W} .

But, it turns out that this key fact follows from property V6 (closure under scalar multiplication).

Well, let \mathbf{x} be any element of \mathbb{W} , and suppose that we have already shown that \mathbb{W} is closed under scalar multiplication

Then we know that $s\mathbf{x} \in \mathbb{W}$ for any $s \in \mathbb{W}$.

But this means that $s\mathbf{x} \in \mathbb{W}$ for s=0 and s=-1

And by Theorem 4.2.1, we know that $0\mathbf{x} = \mathbf{0}$ and $(-1)\mathbf{x} = -\mathbf{x}$.

(Again, we get this by using the fact that V is already known to be a vector space).

So we see that $0 \in \mathbb{W}$ and $-x \in \mathbb{W}$, as desired.

There is one fine detail I skipped over, though. And that is the fact that I assumed that x is an element of W. Well, it only works if W actually contains elements!

That is, we cannot have $W = \emptyset$.

Recall that the empty set can never be a vector space, since any vector space must contain at least a zero vector.

MATH 225 Module 1 Lecture f Course Slides (Last Updated: December 10, 2013)

Subspaces

Definition: Suppose that $\mathbb V$ is a vector space. Then $\mathbb U$ is a subspace of $\mathbb V$ if is satisfies the following three properties:

S0: $\mathbb U$ is a non-empty subset of $\mathbb V$

\$1: $\mathbf{x} + \mathbf{y} \in \mathbb{U}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{U}$ (\mathbb{U} is closed under addition)

\$2: $t\mathbf{x} \in \mathbb{U}$ for all $\mathbf{x} \in \mathbb{U}$ and $t \in \mathbb{R}$ (\mathbb{U} is closed under scalar multiplication)

Subspaces

Example

Show that $\mathbb{U} = \{a + bx + cx^2 \in P_2 \mid a = b = c\}$ is a subspace of P_2 .

Solution

First, we check SO:

Well, $\mathbb U$ is specifically defined as a subset of P_2 , and we see that $0 + 0x + 0x^2 \in \mathbb U$, so $\mathbb U$ is not the empty set.

Next, we check \$1:

Suppose $p(x), q(x) \in \mathbb{U}$. Then there are $p, q \in \mathbb{R}$ such that $p(x) = p + px + px^2$ and $q(x) = q + qx + qx^2$. And we have that

$$p(x) + q(x) = (p + px + px^{2}) + (q + qx + qx^{2}) = (p + q) + (p + q)x + (p + q)x^{2}$$

And so we see that $p(x) + q(x) \in \mathbb{U}$.

Finally, we check \$2:

Suppose $p(x) \in \mathbb{U}$ and $s \in \mathbb{R}$.

Let $p \in \mathbb{R}$ be such that $p(x) = p + px + px^2$.

Then we have that

$$sp(x) = s(p + px + px^2) = (sp) + (sp)x + (sp)x^2$$

And so we see that $sp(x) \in \mathbb{U}$.

And since $\mathbb U$ satisfies properties **\$0**, **\$1**, and **\$2**, we have that $\mathbb U$ is a subspace of P_2 .

MATH 225 Module 1 Lecture f Course Slides (Last Updated: December 10, 2013)

Subspaces

Example

Show that $A = \{a + bx \in P_1 \mid b = a^2\}$ is not a subspace of P_1 .

Solution

To show that something is not a subspace, we need to show that any one of the three properties does not hold.

\$0 is easy to check so we usually start there.

In this case, A is obviously a subset of P_1 , and we quickly see that the zero polynomial in an element of A, so it is non-empty.

But what about \$1?

Well, if we had two functions in \mathcal{A} , say $a+a^2x$ and $b+b^2x$, then when we add them we get $(a+b)+(a^2+b^2)x$. For this function to be in \mathcal{A} , we need to have that $a^2+b^2=(a+b)^2$. This is, of course, not true in general.

Instead of using a blanket statement of $a^2 + b^2 \neq (a + b)^2$ to show that **S1** fails, the correct course of action is to find specific values of a and b such that $a^2 + b^2 \neq (a + b)^2$, and use them as our counterexample.

One possible choice is a=1 and b=2. Using these values we see that A is not a subspace of P_1 :

 \mathcal{A} is not a subspace of P_1 , since there are elements $1+x, 2+4x \in \mathcal{A}$ such that

 $(1+x)+(2+4x)=3+5x\notin A$, so A is not closed under addition.

The last thing I want to point out is that \$2 also fails to hold in this case.

One counterexample could be that $2 + 4x \in A$, but $5(2 + 4x) = 10 + 20x \notin A$.

Subspaces

Example

The set \mathcal{D} of differentiable functions over \mathbb{R} is a vector space.

Solution

We see this by considering it as a subspace of \mathcal{F} (The set of all functions from \mathbb{R} to \mathbb{R}). Then we only need to check the three subspace properties:

S0: Differentiable functions are, of course, functions, so \mathcal{D} is a subset of \mathcal{F} .

Moveover, \mathcal{D} is not empty, since, for example, the zero function is differentiable.

S1: Suppose f and g are differentiable functions.

Then f+g is also differentiable (in fact, (f+g)'=f'+g'), so $f+g\in\mathcal{D}$.

S2: Suppose f is a differentiable function, and $s \in \mathbb{R}$.

Then sf is also differentiable (in fact, (sf)' = sf'), so $sf \in \mathcal{D}$.

This same technique tells us that the set C of continuous functions, is a vector space, as is the set C(a,b) of continuous functions on the interval (a,b). Even our polynomial spaces P_n can be thought of as subspaces of \mathcal{F} .