MATH 106 MODULE 1 LECTURE p COURSE SLIDES (Last Updated: April 16, 2013)

Cross Product

Definition: The cross-product of vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ is defined by
$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

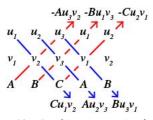
Note that the cross product is only defined in \mathbb{R}^3 !

Example

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 4 \\ -5 \\ 6 \end{bmatrix} = \begin{bmatrix} (2)(6) - (3)(-5) \\ (3)(4) - (1)(6) \\ (1)(-5) - (2)(4) \end{bmatrix} = \begin{bmatrix} 27 \\ 6 \\ -13 \end{bmatrix}$$

Cross Product

Calculating the Cross Product



If we combine the A terms, we get $-Au_3v_2+Au_2v_3=A(u_2v_3-u_3v_2)$.

Removing A, we have the first component of $\vec{u} \times \vec{v}$.

Similarly, $-Bu_1v_3 + Bu_3v_1$ leads us to the second component $u_3v_1 - u_1v_3$.

And $-Cu_2v_1+Cu_1v_2$ leads us to the third component $u_1v_2-u_2v_1$.

MATH 106 MODULE 1 LECTURE p COURSE SLIDES

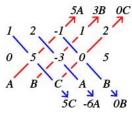
(Last Updated: April 16, 2013)

Cross Product

Example

Calculate the cross product of $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 5 \\ -3 \end{bmatrix}$

Solution



So our A terms are 5-6=-1, our B terms are 3+0=3, and our C terms are 0+5=5.

Thus,
$$\begin{bmatrix} 1\\2\\-1 \end{bmatrix} \times \begin{bmatrix} 0\\5\\-3 \end{bmatrix} = \begin{bmatrix} -1\\3\\5 \end{bmatrix}$$
.

Cross Product

Theorem 1.5.1

For $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^3$ and $t \in \mathbb{R}$, we have

1.
$$\vec{x} \times \vec{y} = -\vec{y} \times \vec{x}$$

$$2. \ \vec{x} \times \vec{x} = \vec{0}$$

3.
$$\vec{x} \times (\vec{y} + \vec{z}) = \vec{x} \times \vec{y} + \vec{x} \times \vec{z}$$

4.
$$(t\vec{x}) \times \vec{y} = t(\vec{x} \times \vec{y}) = \vec{x} \times (t\vec{y})$$

Proof of $ec{x} imesec{y}=-ec{y} imesec{x}$

Suppose $ec{x}, ec{y} \in \mathbb{R}^3$. Then

$$\begin{split} -\vec{y}\times\vec{x} &= -\begin{bmatrix} y_2x_3 - y_3x_2\\ y_3x_1 - y_1x_3\\ y_1x_2 - y_2x_1 \end{bmatrix}\\ &= \begin{bmatrix} y_3x_2 - y_2x_3\\ y_1x_3 - y_3x_1\\ y_2x_1 - y_1x_2 \end{bmatrix}\\ &= \begin{bmatrix} x_2y_3 - x_3y_2\\ x_3y_1 - x_1y_3\\ x_1y_2 - x_2y_1 \end{bmatrix}\\ &= \vec{x}\times\vec{y} \end{split}$$

MATH 106 MODULE 1 LECTURE p COURSE SLIDES (Last Updated: April 16, 2013)

Cross Product
Proofs
Be sure to write out all the details of the proof, as we did above. Every question is a proof!