MATH 106 MODULE 1 LECTURE c COURSE SLIDES

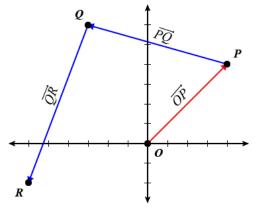
(Last Updated: April 16, 2013)

Directed Line Segments

Definition: The directed line segment from a point P in \mathbb{R}^2 to a point Q in \mathbb{R}^2 is drawn as an arrow with starting point P and tip Q. It is denoted by \overrightarrow{PQ} .

Example

Let P = (4, 4), Q = (-3, 6), R = (-6, -2), and O = (0, 0).



Note: Points are represented by capital letters, while vectors are represented by lowercase letters. We will be switching back and forth between the two.

Directed Line Segments

Definition: A directed line segment that starts at the origin and ends at a point *P* is called the position vector for *P*.

To describe a point in \mathbb{R}^2 you need two pieces of information:

- · its distance from the origin,
- · and which direction to travel that distance.

Definition: We define two directed line segments \vec{PQ} and \vec{RS} to be equivalent if $\vec{q} - \vec{p} = \vec{s} - \vec{r}$, in which case we shall write $\vec{PQ} = \vec{RS}$. In the case where R = O, we get that \vec{PQ} is equivalent to \vec{OS} if $\vec{q} - \vec{p} = \vec{s}$.

MATH 106 MODULE 1 LECTURE c COURSE SLIDES

(Last Updated: April 16, 2013)

Directed Line Segments

Example

Find a vector equation of the line through P = (4, 4) and Q = (-3, 6).

Solution

 \vec{PQ} is a direction vector for the line.

$$\vec{PQ} = \vec{q} - \vec{p} = \begin{bmatrix} -3 \\ 6 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} -7 \\ 2 \end{bmatrix}$$

So the line goes through the point (4, 4) with direction vector $\begin{bmatrix} -7\\2 \end{bmatrix}$

This gives a vector equation $\vec{x} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} + t \begin{bmatrix} -7 \\ 2 \end{bmatrix}$, $t \in \mathbb{R}$.

The line also goes through the point (-3, 6), so we could write a vector equation $\vec{x} = \begin{bmatrix} -3 \\ 6 \end{bmatrix} + t \begin{bmatrix} -7 \\ 2 \end{bmatrix}, t \in \mathbb{R}$.

 \vec{QP} is another direction vector for the line.

$$\vec{QP} = \vec{p} - \vec{q} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$

Using this direction vector with the point P = (4, 4) we get vector equation $\vec{x} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} + t \begin{bmatrix} 7 \\ -2 \end{bmatrix}$, $t \in \mathbb{R}$.

If we use the point Q=(-3,6) with this direction vector we get vector equation $\vec{x}=\begin{bmatrix} -3\\6 \end{bmatrix}+t\begin{bmatrix} 7\\-2 \end{bmatrix}, t\in\mathbb{R}$.

Directed Line Segments

Example

Let L_1 be the line through O=(0,0) and P=(4,4), and let L_2 be the line through Q=(-3,6) and R=(-6,-2). Are L_1 and L_2 parallel?

Solution

We only need to know if $\overset{
ightarrow}{OP}=t\overset{
ightarrow}{QR}$ for some $t\in\mathbb{R}$

$$\stackrel{
ightarrow}{OP} = ec{p} - ec{0} = egin{bmatrix} 4 \ 4 \end{bmatrix}$$

$$\overrightarrow{QR} = \overrightarrow{r} - \overrightarrow{q} = \begin{bmatrix} -6 \\ -2 \end{bmatrix} - \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} -3 \\ -8 \end{bmatrix}$$

Since \overrightarrow{QR} is not a scalar multiple of \overrightarrow{OP} , the lines are not parallel.