MATH 106 MODULE 3 LECTURE S COURSE SLIDES

(Last Updated: April 24, 2013)

Invertible Matrices

There are some matrices that we can "divide" by.

There are many ways to look at division, but for matrices we want to look at the idea of a multiplicative inverse.

Definition: Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix B such that AB = I = BA, then A is said to be invertible, and B is called the inverse of A (and A is the inverse of B). The inverse of A is denoted A^{-1} .

Example

 $\frac{1}{3}$ is the inverse of 3, since $(3)(\frac{1}{3}) = 1 = (\frac{1}{3})(3)$

When you say " $a \div b$ ", you are saying the same thing as " $a \times b^{-1}$ ".

Notes:

- Our definition of a matrix inverse only applies to square matrices, so this already rules out a general definition of matrix division.
- Some $n \times n$ matrices do not have an inverse.

Invertible Matrices

Example

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \text{ is the inverse of } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}, \text{ because }$$

$$AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

MATH 106 MODULE 3 LECTURE s COURSE SLIDES (Last Updated: April 24, 2013)

Invertible Matrices

Example

The matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ does not have an inverse.

To see this, suppose by way of contradiction that $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ does have an inverse $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This means that the components will be a+c=1, a+c=0, b+d=0, b+d=1.

Since a+c=1 and a+c=0 is a contradiction (as is b+d=0 and b+d=1), we see that $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not an invertible matrix.

Invertible Matrices

We have been referring to "the" inverse of A. The fact that a matrix has only one inverse is proved as follows:

Theorem 3.5.1

Let A be a square matrix and suppose that BA = AB = I and CA = AC = I. Then B = C.

Proof

We have B=BI=B(AC)=(BA)C=IC=C . \square

Note: The definition of the inverse says that we need AB = I and BA = I. Since matrix multiplication is not commutative, it is important to list both of these conditions.

MATH 106 MODULE 3 LECTURE s COURSE SLIDES (Last Updated: April 24, 2013)

(Last Opactour / Ip. II _ 1)

Invertible Matrices

Theorem 3.5.2

Suppose that A and B are $n \times n$ matrices such that AB = I. Then BA = I, so that $B = A^{-1}$. Moreover, B and A have rank n.

Proof

To show that BA = I, we will use the fact that if $(BA)\vec{y} = I\vec{y}$ for all $\vec{y} \in \mathbb{R}^n$, then BA = I. But, as $I\vec{y} = \vec{y}$, we will in fact aim to show that $(BA)\vec{y} = \vec{y}$ for all $\vec{y} \in \mathbb{R}^n$.

The first step in this process will be to start at the ending, that is, to show that B has rank n.

We will prove this by contradiction, so let us assume that B does **not** have rank n. Then the homogeneous system $B\vec{x} = \vec{0}$ has a non-trivial solution.

This means that there is some non-zero vector \vec{y} such that $B\vec{y} = \vec{0}$, but this also means that

$$\vec{y} = I\vec{y} = (AB)\vec{y} = A(B\vec{y}) = A\vec{0} = \vec{0}$$

which is a contradiction.

We have therefore shown that B has rank n.

Invertible Matrices

Theorem 3.5.2

Suppose that A and B are $n \times n$ matrices such that AB = I. Then BA = I, so that $B = A^{-1}$. Moreover, B and A have rank n.

Proof

Since B has rank n, we know that the system of equations $B\vec{x}=\vec{y}$ is consistent for all $\vec{y}\in\mathbb{R}^n$. This means that for any $\vec{y}\in\mathbb{R}^n$, there is some $\vec{z}\in\mathbb{R}^n$ such that $B\vec{z}=\vec{y}$.

For every $\vec{y} \in \mathbb{R}^n$, we have

$$(BA)\vec{y} = (BA)(B\vec{z}) = B((AB)\vec{z}) = B(I\vec{z}) = B\vec{z} = \vec{y}$$

We have now shown that $(BA)\vec{y} = \vec{y}$ for all $\vec{y} \in \mathbb{R}^n$, and thus that BA = I.

Now that we have BA = I, we can also prove that A has rank n using the same argument that we used to show that B has rank n. \square

Note: We also get that if BA = I, then AB = I and thus that $B = A^{-1}$, by simply reversing the roles of A and B in Theorem 3.5.2, and using the fact that if $A = B^{-1}$, then $B = A^{-1}$.

MATH 106 MODULE 3 LECTURE s COURSE SLIDES (Last Updated: April 24, 2013)

Invertible Matrices

Theorem 3.5.3

Suppose that A and B are invertible matrices and that t is a non-zero real number.

(a)
$$(tA)^{-1} = \frac{1}{t}A^{-1}$$

(b)
$$(AB)^{-1} = B^{-1}A^{-1}$$

(c)
$$(A^T)^{-1} = (A^{-1})^T$$

Proof

To show that $C = A^{-1}$, we need only show that AC = I.

These proofs also make use of a variety of previous "useful property" theorems.

(a):
$$(tA)(\frac{1}{t}A^{-1}) = (\frac{1}{t})(tAA^{-1}) = \frac{t}{t}I = I$$

(b):
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

(c):
$$(A)^T (A^{-1})^T = (A^{-1}A)^T = I^T = I$$
 (This uses the fact that $(AB)^T = B^T A^T$.)

Invertible Matrices

Suppose that A is an $n \times m$ matrix.

There could then be an $m \times n$ matrix such that AB = I and BA = I, but you wouldn't have AB = BA, since AB is an $n \times n$ matrix and BA is an $m \times m$ matrix.

We thus break the idea of an inverse into a left inverse (an $m \times n$ matrix B such that BA = I) and a right inverse (an $m \times n$ matrix C such that AC = I).

Theorem 3.5.2 explains why it isn't necessary to bother with such a distinction for square matrices, but if $m \neq n$ all sorts of crazy things can happen:

- You can have a left inverse but no right inverse.
- You can have a right inverse but no left inverse.
- · You can even have multiple left inverses or multiple right inverses.

Page 4 of 5
© University of Waterloo and others

MATH 106 MODULE 3 LECTURE S COURSE SLIDES

(Last Updated: April 24, 2013)

Invertible Matrices

Example

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \text{ is a right inverse for } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{, since }$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We also have
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is a right inverse for $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, since

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

But
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 does not have any left inverses, since for any 3×2 matrix $\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$, we have

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 0 \end{bmatrix}$$

Thus,
$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ e & f & 0 \end{bmatrix}$$
 cannot be the identity matrix, since its last column is all zeros.

Note: It turns out that only square matrices can have both a left and a right inverse, and so from this point on we will only concern ourselves with the inverses of square matrices.