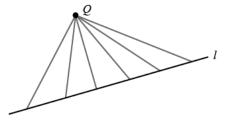
(Last Updated: April 16, 2013)

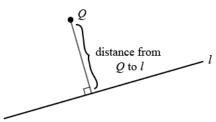
Projections and Perpendiculars



A common thing to look for is the distance from a point to a line.

That is, to look for the shortest distance from our starting point to a point on the line.

Projections and Perpendiculars



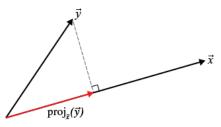
A common thing to look for is the distance from a point to a line.

That is, to look for the shortest distance from our starting point to a point on the line.

We assume that you know that we find the minimum distance by looking at the connecting segment that is perpendicular to our line.

(Last Updated: April 16, 2013)

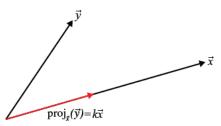
Projections and Perpendiculars



Definition: The part of \vec{y} that is in the direction of \vec{x} will be called the projection of \vec{y} onto \vec{x} , and is denoted by $\operatorname{proj}_{\vec{x}}(\vec{y}).$

Notice $\mathrm{proj}_{\vec{x}}(\vec{y})$ will be in the same direction as \vec{x} , and thus will be a scalar multiple of \vec{x} .

Projections and Perpendiculars

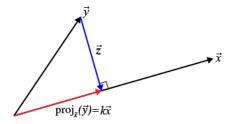


Definition: The part of \vec{y} that is in the direction of \vec{x} will be called the projection of \vec{y} onto \vec{x} , and is denoted by $\operatorname{proj}_{\vec{x}}(\vec{y}).$

Notice $\operatorname{proj}_{\vec{x}}(\vec{y})$ will be in the same direction as \vec{x} , and thus will be a scalar multiple of \vec{x} . Let k be the scalar, so that $\operatorname{proj}_{\vec{x}}(\vec{y}) = k\vec{x}$.

(Last Updated: April 16, 2013)

Projections and Perpendiculars



Definition: The part of \vec{y} that is in the direction of \vec{x} will be called the projection of \vec{y} onto \vec{x} , and is denoted by $\operatorname{proj}_{\vec{x}}(\vec{y}).$

Notice $\operatorname{proj}_{\vec{x}}(\vec{y})$ will be in the same direction as \vec{x} , and thus will be a scalar multiple of \vec{x} .

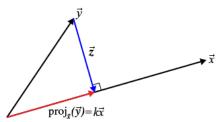
Let k be the scalar, so that $\mathrm{proj}_{\vec{x}}(\vec{y}) = k\vec{x}$.

Now, let \vec{z} be such that $\vec{y} + \vec{z} = \operatorname{proj}_{\vec{z}}(\vec{y})$.

Then \vec{z} is orthogonal to \vec{x} .

Putting these facts together, we have that $k\vec{x} = \vec{y} + \vec{z}$.

Projections and Perpendiculars



Putting these facts together, we have that $k\vec{x} = \vec{y} + \vec{z}$.

We can take the dot product of both sides getting that $\vec{x} \cdot (k\vec{x}) = \vec{x} \cdot (\vec{y} + \vec{z}) \Rightarrow k(\vec{x} \cdot \vec{x}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$.

But since \vec{z} is orthogonal to \vec{x} , we have $\vec{x} \cdot \vec{z} = 0$.

And therefore we get that $k = (\vec{x} \cdot \vec{y})/(\vec{x} \cdot \vec{x})$.

This gives us that

$$\operatorname{proj}_{\vec{x}} \vec{y} = \frac{\vec{y} \cdot \vec{x}}{\left| \left| \vec{x} \right| \right|^2} \vec{x}$$

MATH 106 MODULE 1 LECTURE n COURSE SLIDES (Last Updated: April 16, 2013)

Projections and Perpendiculars

Example

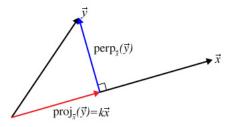
Let
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 and let $\vec{y} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$.

Then

$$\begin{split} \vec{x} \cdot \vec{y} &= \vec{y} \cdot \vec{x} = (1)(0) + (2)(3) + (-1)(4) = 2 \\ ||\vec{x}||^2 &= 1^2 + 2^2 + (-1)^2 = 6 \\ ||\vec{y}||^2 &= 0^2 + 3^2 + 4^2 = 25 \\ \text{proj}_{\vec{x}} \vec{y} &= (2/6) \vec{x} = (1/3) \vec{x} = \begin{bmatrix} 1/3 \\ 2/3 \\ -1/3 \end{bmatrix} \\ \text{proj}_{\vec{y}} \vec{x} &= (2/25) \vec{y} = \begin{bmatrix} 0 \\ 6/25 \\ 8/25 \end{bmatrix} \end{split}$$

Projections and Perpendiculars

Definition: For any vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$, with $\vec{x} \neq \vec{0}$, we define the projection of \vec{y} perpendicular to \vec{x} to be $\mathrm{perp}_{\vec{x}}\vec{y} = \vec{y} - \mathrm{proj}_{\vec{x}}\vec{y}$



We see we can split a vector \vec{y} into its portion in the direction of \vec{x} and its portion perpendicular to \vec{x} , since $\vec{y} = \text{perp}_{\vec{x}} \vec{y} + \text{proj}_{\vec{x}} \vec{y}$.

(Last Updated: April 16, 2013)

Projections and Perpendiculars

Example

Let
$$ec{x} = egin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$$
 and let $ec{y} = egin{bmatrix} 0 \ 3 \ 4 \end{bmatrix}$.

Then in the previous example, we calculated that $\operatorname{proj}_{\vec{x}}\vec{y} = \begin{bmatrix} 1/3 \\ 2/3 \\ -1/3 \end{bmatrix}$ and $\operatorname{proj}_{\vec{y}}\vec{x} = \begin{bmatrix} 0 \\ 6/25 \\ 8/25 \end{bmatrix}$.

So now we get that

$$\operatorname{perp}_{\vec{x}} \vec{y} = \vec{y} - \operatorname{proj}_{\vec{x}} \vec{y} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 1/3 \\ 2/3 \\ -1/3 \end{bmatrix} = \begin{bmatrix} -1/3 \\ 7/3 \\ 11/3 \end{bmatrix}$$

and

$$\operatorname{perp}_{\vec{y}} \vec{x} = \vec{x} - \operatorname{proj}_{\vec{y}} \vec{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ 6/25 \\ 8/25 \end{bmatrix} = \begin{bmatrix} 1 \\ 44/25 \\ -33/25 \end{bmatrix}$$

Linearity Properties of Projections

L1. $\operatorname{proj}_{\vec{x}}(\vec{y}+\vec{z}) = \operatorname{proj}_{\vec{x}}\vec{y} + \operatorname{proj}_{\vec{x}}\vec{z}$ and $\operatorname{perp}_{\vec{x}}(\vec{y}+\vec{z}) = \operatorname{perp}_{\vec{x}}\vec{y} + \operatorname{perp}_{\vec{x}}\vec{z}$ for all $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ **L2.** $\operatorname{proj}_{\vec{x}}(t\vec{y}) = t \operatorname{proj}_{\vec{x}}\vec{y}$ and $\operatorname{perp}_{\vec{x}}(t\vec{y}) = t \operatorname{perp}_{\vec{x}}\vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $t \in \mathbb{R}$

Proof of L2

Let $ec{x}, ec{y} \in \mathbb{R}^n$ and $t \in \mathbb{R}$

$$\text{Then } \mathrm{proj}_{\vec{x}}(t\vec{y}) = \frac{(t\vec{y}) \cdot \vec{x}}{||\vec{x}||^2} \, \vec{x} = \frac{t(\vec{y} \cdot \vec{x})}{||\vec{x}||^2} \, \vec{x} = t \, \frac{\vec{y} \cdot \vec{x}}{||\vec{x}||^2} \, \vec{x} = t \, \mathrm{proj}_{\vec{x}}(\vec{y}), \text{ as desired.}$$

And this means that $\operatorname{perp}_{\vec{x}}(t\vec{y}) = t\vec{y} - \operatorname{proj}_{\vec{x}}(t\vec{y}) = t\vec{y} - t \operatorname{proj}_{\vec{x}}(\vec{y}) = t(\vec{y} - \operatorname{proj}_{\vec{x}}(\vec{y})) = t \operatorname{perp}_{\vec{x}}\vec{y}$, as desired. \square The proof of **L1** is similar.

Note

- $\operatorname{proj}_{\vec{x}}(\operatorname{proj}_{\vec{x}}(\vec{y})) = \operatorname{proj}_{\vec{x}}(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$
- $\bullet \ \operatorname{perp}_{\vec{x}}(\operatorname{perp}_{\vec{x}}(\vec{y})) = \operatorname{perp}_{\vec{x}}(\vec{y}) \text{ for all } \vec{x}, \vec{y} \in \mathbb{R}^n$
- If \vec{y} is a scalar multiple of \vec{x} , then $\operatorname{proj}_{\vec{x}}(\vec{y}) = \vec{y}$ (and thus $\operatorname{perp}_{\vec{x}}(\vec{y}) = \vec{0}$).
- If \vec{y} is orthogonal to \vec{x} , then $\operatorname{perp}_{\vec{x}}(\vec{y}) = \vec{y}$ (and thus $\operatorname{proj}_{\vec{x}}(\vec{y}) = \vec{0}$).