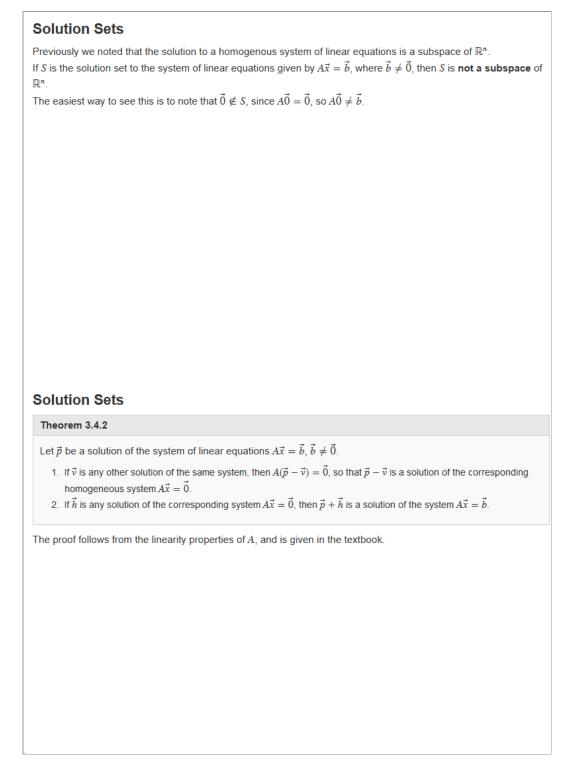
MATH 106 MODULE 3 LECTURE n COURSE SLIDES

(Last Updated: April 17, 2013)



MATH 106 MODULE 3 LECTURE n COURSE SLIDES

(Last Updated: April 17, 2013)

Solution Sets

Theorem 3.4.2 - Addition

Let \vec{p} be a solution of the system of linear equations $A\vec{x} = \vec{b}$, $\vec{b} \neq \vec{0}$, and let Null(A) be the solution set for the corresponding homogeneous system $A\vec{x} = \vec{0}$. Then the solution set for $A\vec{x} = \vec{b}$ is

$$S = \{\vec{x} + \vec{p} \mid \vec{x} \in \text{Null}(A)\}$$

Proof

To prove this fact, we need to show two things:

- 1. Every element of S (that is, every vector of the form $\vec{x} + \vec{p}$ where $\vec{x} \in \text{Null}(A)$) is a solution of $A\vec{x} = \vec{b}$, and
- 2. Every solution to $A\vec{x} = \vec{b}$ is in S, that is of the form $\vec{y} + \vec{p}$ where $\vec{y} \in \text{Null}(A)$.

Solution Sets

Theorem 3.4.2 - Addition

Let \vec{p} be a solution of the system of linear equations $A\vec{x} = \vec{b}$, $\vec{b} \neq \vec{0}$, and let Null(A) be the solution set for the corresponding homogeneous system $A\vec{x} = \vec{0}$. Then the solution set for $A\vec{x} = \vec{b}$ is

$$S = \{\vec{x} + \vec{p} \mid \vec{x} \in \text{Null}(A)\}\$$

Proof

To prove this fact, we need to show two things:

- 1. Every element of S (that is, every vector of the form $\vec{x} + \vec{p}$ where $\vec{x} \in \text{Null}(A)$) is a solution of $A\vec{x} = \vec{b}$, and
- 2. Every solution to $A\vec{x} = \vec{b}$ is in S, that is of the form $\vec{y} + \vec{p}$ where $\vec{y} \in \text{Null}(A)$.
- (1.) follows directly from part (2.) of Theorem 3.4.2.

MATH 106 MODULE 3 LECTURE n COURSE SLIDES

(Last Updated: April 17, 2013)

Solution Sets

Theorem 3.4.2 - Addition

Let \vec{p} be a solution of the system of linear equations $A\vec{x} = \vec{b}$, $\vec{b} \neq \vec{0}$, and let Null(A) be the solution set for the corresponding homogeneous system $A\vec{x} = \vec{0}$. Then the solution set for $A\vec{x} = \vec{b}$ is

$$S = \{\vec{x} + \vec{p} \mid \vec{x} \in \text{Null}(A)\}$$

Proof

To prove this fact, we need to show two things:

- 1. Every element of S (that is, every vector of the form $\vec{x} + \vec{p}$ where $\vec{x} \in \text{Null}(A)$) is a solution of $A\vec{x} = \vec{b}$, and
- 2. Every solution to $A\vec{x} = \vec{b}$ is in S, that is of the form $\vec{y} + \vec{p}$ where $\vec{y} \in \text{Null}(A)$.
- (1.) follows directly from part (2.) of Theorem 3.4.2.

For (2.), suppose \vec{h} is a solution to $A\vec{x} = \vec{b}$.

Then Theorem 3.4.2 part (1.) says that $\vec{h} - \vec{p} \in \text{Null}(A)$.

So, let $\vec{h} - \vec{p}$ be our " \vec{y} ", and we have that $\vec{h} = (\vec{h} - \vec{p}) + \vec{p} = \vec{y} + \vec{p}$, where $\vec{y} = (\vec{h} - \vec{p}) \in \text{Null}(A)$.

Solution Sets

Theorem 3.4.2 - Addition

Let \vec{p} be a solution of the system of linear equations $A\vec{x} = \vec{b}$, $\vec{b} \neq \vec{0}$, and let Null(A) be the solution set for the corresponding homogeneous system $A\vec{x} = \vec{0}$. Then the solution set for $A\vec{x} = \vec{b}$ is

$$S = \{\vec{x} + \vec{p} \mid \vec{x} \in \text{Null}(A)\}\$$

The addition to Theorem 3.4.2 says that the solution set of a non-homogeneous system is simply a translation of the solution set of the homogeneous system.

So, if the solution to the homogeneous system was a line through the origin, then the solution to the non-homogeneous system is a line through \vec{p} .

If the solution to the homogeneous system was a hyperplane through the origin, then the solution to the non-homogeneous system is a hyperplane through \vec{p} .

It also means that if you know that the general solution to $A\vec{x} = \vec{0}$ is $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, then the general solution to $A\vec{x} = \vec{b}$ would be $t_1\vec{v}_1 + t_2\vec{v}_2 + \cdots + t_n\vec{v}_n + \vec{p}$.