MATH 106 MODULE 1 LECTURE g COURSE SLIDES (Last Updated: April 16, 2013)

Subspaces

Definition: A subset S of \mathbb{R}^n is called a subspace of \mathbb{R}^n if the following conditions hold:

- 0. S is non-empty
- 1. S is closed under addition (that is, for $\vec{x}, \vec{y} \in S$ we have $\vec{x} + \vec{y} \in S$)
- 2. S is closed under scalar multiplication (that is, for $t\in\mathbb{R}$ and $\vec{x}\in S$, we have $t\vec{x}\in S$)

It is quick to show that $\{\vec{0}\}$ is always a subspace of \mathbb{R}^n , and \mathbb{R}^n is always a subspace of \mathbb{R}^n .

With the exception of the set $\{\vec{0}\}$, subspaces will always contain an infinite number of elements. As such, we can't describe S with a list of elements.

Subspaces

Example 1

Consider the subset $S_1 = \{ \vec{0}, \vec{e_1}, \vec{e_2} \}$ of \mathbb{R}^2 .

Then S_1 is non-empty (and even contains $\vec{0}$).

But S_1 is not closed under addition, as $\vec{e_1}+\vec{e_2}=\begin{bmatrix}1\\1\end{bmatrix}$, but $\begin{bmatrix}1\\1\end{bmatrix}\not\in S_1$.

 S_1 is also not closed under scalar multiplication, as $2\vec{e_1}=\begin{bmatrix}2\\0\end{bmatrix}$, but $\begin{bmatrix}2\\0\end{bmatrix}\not\in S_1$. So S_1 is **not** a subspace of \mathbb{R}^2 .

Example 2

Consider the subset $S_2=\left\{\left[egin{array}{c} x_1\\ x_2 \end{array}\right]\mid x_1=1
ight\}$ of \mathbb{R}^2 .

Then $\vec{0} \notin S_2$, so S_2 is not a subspace of \mathbb{R}^2 .

MATH 106 MODULE 1 LECTURE g COURSE SLIDES (Last Updated: April 16, 2013)

Subspaces

Example 3

Consider the subset
$$S_3=\left\{\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\mid x_1x_2-x_3=0\right\}.$$
 Then $\begin{bmatrix}2\\3\\6\end{bmatrix}\in S_3$ as $(2)(3)-6=0$, but $2\begin{bmatrix}2\\3\\6\end{bmatrix}=\begin{bmatrix}4\\6\\12\end{bmatrix}\not\in S_3$, as $(4)(6)-12=12\neq 0$. So S_3 is not a subspace of \mathbb{R}^3 .

Example 4

Consider the subset
$$S_4=\left\{\left[\begin{matrix} x_1\\x_2\end{matrix}\right]\mid x_1,x_2\leq 0\right\}$$
 of \mathbb{R}^2 .

Then
$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \in S_4$$
, but $(-1) \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \not\in S_4$.

So S_4 is not a subspace of \mathbb{R}^2

Subspaces

Example 5

Consider the subset
$$S_5=\left\{\left[egin{array}{c} x_1\\x_2 \end{array}\right]\mid x_1=0
ight\}$$
 of $\mathbb{R}^2.$

Then
$$\left[egin{array}{c} 0 \\ 0 \end{array}
ight]\in S_{\mathbf{5}},$$
 so $S_{\mathbf{5}}$ is non-empty.

Let
$$ec{x}=egin{bmatrix} x_1\\x_2\\x_2 \end{bmatrix}$$
 and $ec{y}=egin{bmatrix} y_1\\y_2\\ \end{bmatrix}$ be elements of S_5 . Then $x_1=y_1=0$.

Let
$$\vec{z} = \vec{x} + \vec{y}$$

Then
$$\vec{z} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} = \begin{bmatrix} 0 + 0 \\ x_2 + y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 + y_2 \end{bmatrix}$$
. Since $z_1 = 0$ we see that $\vec{z} \in S_5$, and thus S_5 is closed under addition.

Finally, let
$$ec{x}=\left[egin{array}{c} x_1 \\ x_2 \end{array}
ight]\in S_5$$
 and $t\in\mathbb{R},$ and let $ec{z}=tec{x}$

Then
$$\vec{z} = \begin{bmatrix} tx_1 \\ tx_2 \end{bmatrix} = \begin{bmatrix} t(0) \\ tx_2 \end{bmatrix} = \begin{bmatrix} 0 \\ tx_2 \end{bmatrix}$$
.

Since $z_1=0$ we have that $\vec{z}\in S_5$, and thus S_5 is closed under scalar multiplication.

And as S_5 is non-empty, closed under addition, and closed under scalar multiplication, we have that S_5 is a subspace of \mathbb{R}^2 .

MATH 106 MODULE 1 LECTURE g COURSE SLIDES (Last Updated: April 16, 2013)

Subspaces

Example 6

Consider the subset
$$S_6=\left\{\left[egin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\mid x_3=x_1+x_2
ight\}$$
 of \mathbb{R}^3 .

Then $\vec{0} \in S_6$ since 0 = 0 + 0. So S_6 is non-empty.

Next, suppose that $ec{x}, ec{y} \in S_6$. Then we have $x_3 = x_1 + x_2$ and $y_3 = y_1 + y_2$.

So let
$$\vec{z} = \vec{x} + \vec{y}$$
.

Then
$$z_1 = x_1 + y_1$$
, $z_2 = x_2 + y_2$, and

$$z_3 = x_3 + y_3 = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) = z_1 + z_2$$

So we have $\vec{z} \in S_6$, and thus that S_6 is closed under addition.

Finally, let $\vec{x} \in S_6$, $t \in \mathbb{R}$, and let $\vec{z} = t\vec{x}$.

Then $z_1 = tx_1$, $z_2 = tx_2$, and $z_3 = tx_3 = t(x_1 + x_2) = tx_1 + tx_2 = z_1 + z_2$.

So we see that $\vec{z} \in S_6$, and thus that S_6 is closed under scalar multiplication.

As we have shown that S_6 is non-empty, closed under addition, and closed under scalar multiplication, we have that S_6 is a subspace of \mathbb{R}^3 .