MATH 106 MODULE 1 LECTURE m COURSE SLIDES

(Last Updated: August 19, 2013)

The Scalar Equation of a Hyperplane

We will develop the general scalar equation of a hyperplane by first focusing on the equation of a hyperplane in \mathbb{R}^3 . Remember a hyperplane in \mathbb{R}^3 is the same as a plane.

Previously we saw the vector equation of a plane in \mathbb{R}^3 is $\vec{x} = \vec{p} + t_1 \vec{v}_1 + t_2 \vec{v}_2$, where \vec{p} , \vec{v}_1 , and \vec{v}_2 are all fixed vectors, and as we vary the scalars t_1 and t_2 we get all the vectors \vec{x} on the plane.

But it happens that we can also get a scalar equation for a plane, of the form $ax_1 + bx_2 + cx_3 = d$, where

$$a,b,c,d\in\mathbb{R}$$
, and the vector $ec{x}=egin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$ is on the plane if and only if $x_1,\,x_2,\,$ and x_3 satisfy the equation.

Since a hyperplane is one dimension smaller than the space it lives in, instead of listing the n-1 directions that are in the hyperplane, we look at the one direction that is **not** in the hyperplane.

So in \mathbb{R}^3 , instead of describing a plane using the two direction vectors \vec{v}_1 and \vec{v}_2 that are in the plane, we are going to look for a third vector \vec{n} that is not in the plane.

The vector we are looking for is called the <u>normal vector</u> for the plane, and it has the property that it is orthogonal to any directed line segment in the plane.

So, if \vec{x} is on the plane $\vec{x} = \vec{p} + t_1 \vec{v}_1 + t_2 \vec{v}_2$, then the directed line segment $\overrightarrow{PX} = \vec{x} - \vec{p}$ is in the plane, and so we want to satisfy $\vec{n} \cdot (\vec{p} - \vec{x}) = 0$.

This means that
$$n_1(x_1-p_1)+n_2(x_2-p_2)+n_3(x_3-p_3)=0$$
, or that

$$n_1x_1 + n_2x_2 + n_3x_3 = n_1p_1 + n_2p_2 + n_3p_3$$

This means that, in our general scalar equation of a plane $(ax_1+bx_2+cx_3=d)$, we have $a=n_1,\,b=n_2,\,c=n_3$, and $d=\vec{n}\cdot\vec{p}$.

The Scalar Equation of a Hyperplane

Example

Find the scalar equation of the plane in \mathbb{R}^3 that passes through the point P(-3,2,7) and has normal vector

$$\vec{n} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Solution

First we compute $\vec{n} \cdot \vec{p} = (3)(-3) + (2)(2) + (1)(7) = 2$.

Then the equation is $3x_1 + 2x_2 + x_3 = 2$.

MATH 106 MODULE 1 LECTURE m COURSE SLIDES

(Last Updated: August 19, 2013)

The Scalar Equation of a Hyperplane

Definition: Two planes in \mathbb{R}^3 are defined to be parallel if the normal vector to one plane is a non-zero scalar multiple of the normal vector of the other plane.

Example

The plane
$$3x_1 + 2x_2 + x_3 = 2$$
 is parallel to the plane $9x_1 + 6x_2 + 3x_3 = -5$, (because $3\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}$).

However, the plane
$$3x_1 + 2x_2 + x_3 = 2$$
 is not parallel to $3x_1 + 2x_2 - x_3 = 7$ (since $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \neq t \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$ for any $t \in \mathbb{R}$).

The Scalar Equation of a Hyperplane

Example

Consider the planes $A = 3x_1 + 2x_2 + x_3 = 2$ and $B = 9x_1 + 6x_2 + 3x_3 = -5$.

We saw in the previous example that they are parallel.

They are not the same plane, as (0, 1, 0) is on plane A (since 3(0) + 2(1) + 1(0) = 2), but it is not on plane B (since $9(0) + 6(1) + 3(0) = 6 \neq -5$).

So, let (a, b, c) be a generic point on A.

Then we have 3a + 2b + c = 2, which means that $9a + 6b + 3c = 3(3a + 2b + c) = 3(2) = 6 \neq -5$, so (a, b, c) is not on B.

Similarly, if we look at a generic point (a', b', c') on B, then it satisfies 9a' + 6b' + 3c' = -5.

But this means that $3a' + 2b' + c' = (1/3)(9a' + 6b' + 3c') = (1/3)(-5) = -5/3 \neq 2$, so (a', b', c') is not on A.

As such, we see that A and B do not have any points in common.

MATH 106 MODULE 1 LECTURE m COURSE SLIDES

(Last Updated: August 19, 2013)

The Scalar Equation of a Hyperplane

Definition: We say that two planes are orthogonal to each other if their normal vectors are orthogonal to each other.

Example

Consider the planes $3x_1 + 2x_2 + x_3 = 2$ and $-2x_1 + 4x_2 - 2x_3 = -3$.

They are orthogonal, because
$$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 4 \\ -2 \end{bmatrix} = (3)(-2) + (2)(4) + (1)(-2) = 0.$$

The Scalar Equation of a Hyperplane

Let A be a hyperplane in \mathbb{R}^n that contains the point \vec{p} , and let \vec{m} be a vector that is orthogonal to every directed line segment in A.

Then the scalar equation for A is

$$m_1x_1 + m_2x_2 + \dots + m_nx_n = \vec{m} \cdot \vec{p}$$

Example

Find the scalar equation of the hyperplane in \mathbb{R}^5 that has normal vector $\begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$ and passes through the point

$$P(-1, 1, 4, 2, -4)$$
.

Solution

First we compute $\vec{m} \cdot \vec{p} = (1)(-1) + (2)(1) + (3)(4) + (4)(2) + (5)(-4) = 1$