MATH 106 MODULE 3 LECTURE c COURSE SLIDES

(Last Updated: April 24, 2013)

The Transpose of a Matrix

Definition: Let A be an $m \times n$ matrix. Then the transpose of A is the $n \times m$ matrix A^T whose ij-th entry is the ji-th entry of A. That is,

$$(A^T)_{ij} = (A)_{ji}$$

Examples

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -2 & -3 & -4 \end{bmatrix}^T = \begin{bmatrix} 1 & -1 \\ 2 & -2 \\ 3 & -3 \\ 4 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & 8 \end{bmatrix}^T = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

The Transpose of a Matrix

Properties of the Transpose

One interesting property of the transpose is that it is an operation on a matrix that changes the size of the matrix. Therefore, in general, $A + A^T$ will not be defined, nor will $A = A^T$ be true.

However, in the case that A is a sqaure matrix, $A + A^T$ is defined, and there is a possibility that $A = A^T$ (but this is not necessarily true).

Theorem 3.1.2

For any matrices A and B and scalar $s \in \mathbb{R}$, we have that

- 1. $(A^T)^T = A$
- 2. $(A + B)^T = A^T + B^T$
- 3. $(sA)^T = sA^T$

MATH 106 MODULE 3 LECTURE c COURSE SLIDES (Last Updated: April 24, 2013)

The Transpose of a Matrix

Example

Let
$$A = \begin{bmatrix} -3 & 0 \\ 9 & 2 \\ -2 & 2 \\ 7 & -1 \end{bmatrix}$$
. Then $A^T = \begin{bmatrix} -3 & 9 & -2 & 7 \\ 0 & 2 & 2 & -1 \end{bmatrix}$

We see that

$$(A^T)^T = \begin{bmatrix} -3 & 0 \\ 9 & 2 \\ -2 & 2 \\ 7 & -1 \end{bmatrix} = A$$

Moreover, we note that

$$(5A)^{T} = \begin{bmatrix} -15 & 0 \\ 45 & 10 \\ -10 & 10 \\ 35 & -5 \end{bmatrix}^{T} = \begin{bmatrix} -15 & 45 & -10 & 35 \\ 0 & 10 & 10 & -5 \end{bmatrix} = 5 \begin{bmatrix} -3 & 9 & -2 & 7 \\ 0 & 2 & 2 & -1 \end{bmatrix} = 5A^{T}$$

The Transpose of a Matrix

Example

$$\operatorname{Let} A = \begin{bmatrix} -3 & 0 \\ 9 & 2 \\ -2 & 2 \\ 7 & -1 \end{bmatrix}. \operatorname{Then} A^T = \begin{bmatrix} -3 & 9 & -2 & 7 \\ 0 & 2 & 2 & -1 \end{bmatrix}$$

Now, if
$$B = \begin{bmatrix} 4 & 1 \\ -5 & -3 \\ 0 & 2 \\ -9 & 6 \end{bmatrix}$$
, then $B^T = \begin{bmatrix} 4 & -5 & 0 & -9 \\ 1 & -3 & 2 & 6 \end{bmatrix}$.

Therefore,

$$A + B = \begin{bmatrix} -3 & 0 \\ 9 & 2 \\ -2 & 2 \\ 7 & -1 \end{bmatrix} + \begin{bmatrix} 4 & 1 \\ -5 & -3 \\ 0 & 2 \\ -9 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & -1 \\ -2 & 4 \\ -2 & 5 \end{bmatrix}$$

Hence, we see that

$$A^{T} + B^{T} = \begin{bmatrix} -3 & 9 & -2 & 7 \\ 0 & 2 & 2 & -1 \end{bmatrix} + \begin{bmatrix} 4 & -5 & 0 & -9 \\ 1 & -3 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 & -2 & -2 \\ 1 & -1 & 4 & 5 \end{bmatrix} = (A + B)^{T}$$