Complex Subspaces

Definition: Suppose that $\mathbb V$ is a vector space over $\mathbb C$, and that $\mathbb U$ is a subset of $\mathbb V$. If $\mathbb U$ is a vector space over $\mathbb C$ using the same definition of addition and scalar multiplication as $\mathbb V$, then $\mathbb U$ is called a subspace of $\mathbb V$.

As we found in \mathbb{R} , any subset (but not necessarily a vector space) \mathbb{W} of a vector space \mathbb{V} , we will automatically satisfy properties V2, V5, V7, V8, V9, and V10.

So, if we want to prove that $\mathbb W$ is itself a vector space, we only need to look at properties V1, V4, V5, and V6.

We can easily use the same proof as in \mathbb{R} , to show that $0\mathbf{v}=\mathbf{0}$ and $(-1)\mathbf{v}=-\mathbf{v}$ in \mathbb{C} as well.

This means that properties **V4** and **V5** will follow from property **V6** (closure under scalar multiplication). And so, as before, we get the following alternate definition of a subspace.

Definition: Suppose that $\mathbb V$ is a vector space over $\mathbb C$. Then $\mathbb U$ is a subspace of $\mathbb V$ if is satisfies the following three properties:

S0: $\mathbb U$ is a non-empty subset of $\mathbb V$

S1: $w + z \in \mathbb{U}$ for all $w, z \in \mathbb{U}$ (\mathbb{U} is closed under addition)

S2: $\alpha \mathbf{z} \in \mathbb{U}$ for all $\mathbf{z} \in \mathbb{U}$ and $\alpha \in \mathbb{C}$ (\mathbb{U} is closed under scalar multiplication)

Complex Subspaces

Example

Show that the set $\mathbb{U}=\left\{\left[\begin{matrix}z\\2z\end{matrix}\right]\mid z\in\mathbb{C}\right\}$ is a subspace of $\mathbb{C}^2.$

We need to verify the three defining properties.

S0: We note that $\begin{bmatrix} z \\ 2z \end{bmatrix} \in \mathbb{C}^2$ for all $z \in \mathbb{C}$, so \mathbb{U} is a subset of \mathbb{C}^2 . To see that it is non-empty, we note that 2(0) = 0, so $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{U}$.

S1: Let $\vec{w}, \vec{z} \in \mathbb{U}$. Then we have that $\vec{w} = \begin{bmatrix} w \\ 2w \end{bmatrix}$ and $\vec{z} = \begin{bmatrix} z \\ 2z \end{bmatrix}$ for some $w, z \in \mathbb{C}$.

$$\vec{w} + \vec{z} = \begin{bmatrix} w \\ 2w \end{bmatrix} + \begin{bmatrix} z \\ 2z \end{bmatrix}$$

$$= \begin{bmatrix} w+z \\ 2w+2z \end{bmatrix}$$

$$= \begin{bmatrix} w+z \\ 2(w+z) \end{bmatrix}$$

and since $w + z \in \mathbb{C}$, we see that $\vec{w} + \vec{z} \in \mathbb{U}$.

MATH 225

Module 3 Lecture I Course Slides (Last Updated: January 15, 2014)

Complex Subspaces

Example

 $\mathbf{S2} \text{: Let } \vec{z} \in \mathbb{U} \text{ so } \vec{z} = \begin{bmatrix} z \\ 2z \end{bmatrix} \text{, and } \alpha \in \mathbb{C}.$

$$\alpha \vec{z} = \alpha \begin{bmatrix} z \\ 2z \end{bmatrix}$$

$$= \begin{bmatrix} \alpha z \\ \alpha(2z) \end{bmatrix}$$

$$= \begin{bmatrix} \alpha z \\ 2(\alpha z) \end{bmatrix}$$

and since $\alpha z \in \mathbb{C}$, we see that $\alpha \vec{z} \in \mathbb{U}$.

Complex Subspaces

Example

Let ${\it C}(2,2)$ be the set of all 2×2 matrices with entries from the complex numbers, and let

$$\mathcal{A} = \left\{ \begin{bmatrix} z_1 & z_2 \\ z_1 & z_2 \end{bmatrix} \mid z_1, z_2 \in \mathbb{C} \right\}. \text{ Then } \mathcal{A} \text{ is a subspace of } C(2,2).$$

To prove this, we check the three properties:

S0:
$$\begin{bmatrix} z_1 & z_2 \\ z_1 & z_2 \end{bmatrix} \in C(2,2)$$
 for all $z_1, z_2 \in \mathbb{C}$, so \mathcal{A} is a subset of $C(2,2)$.

To see that \mathcal{A} is non-empty, we can set $z_1=z_2=0$, and see that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{A}$.

$$\mathbf{S1} \colon \mathsf{Let}\, A, B \in \mathcal{A}, \, \mathsf{say}\, A = \begin{bmatrix} a_1 & a_2 \\ a_1 & a_2 \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 & b_2 \\ b_1 & b_2 \end{bmatrix}.$$

$$A + B = \begin{bmatrix} a_1 & a_2 \\ a_1 & a_2 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \\ b_1 & b_2 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_1 + b_1 & a_2 + b_2 \end{bmatrix}$$

and since $a_1 + b_1 \in \mathbb{C}$ and $a_2 + b_2 \in \mathbb{C}$, we see that $A + B \in \mathcal{A}$.

MATH 225 Module 3 Lecture I Course Slides (Last Updated: January 15, 2014)

Complex Subspaces

Example

$$\mathbf{S2} \text{: Let } A \in \mathcal{A} \text{ say } A = \begin{bmatrix} a_1 & a_2 \\ a_1 & a_2 \end{bmatrix} \text{ and } \alpha \in \mathbb{C}.$$

$$\alpha A = \alpha \begin{bmatrix} a_1 & a_2 \\ a_1 & a_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 & \alpha a_2 \\ \alpha a_1 & \alpha a_2 \end{bmatrix}$$

and since $\alpha a_1 \in \mathbb{C}$ and $\alpha a_2 \in \mathbb{C}$, we see that $\alpha A \in \mathcal{A}$.

Example

To see that the set
$$\mathbb{W} = \left\{ \begin{bmatrix} z \\ z^2 \end{bmatrix} \mid z \in \mathbb{C} \right\}$$
 is not a subspace of \mathbb{C}^2 , consider that $\begin{bmatrix} i \\ -1 \end{bmatrix} \in \mathbb{W}$ and $\begin{bmatrix} -i \\ -1 \end{bmatrix} \in \mathbb{W}$, but $\begin{bmatrix} i \\ -1 \end{bmatrix} + \begin{bmatrix} -i \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ -2 \end{bmatrix} \notin \mathbb{W}$.

As such, S1 fails, so W is not a subspace.