MATH 225 Module 1 Lecture j Course Slides (Last Updated: December 10, 2013)

Dimension

Lemma 4.3.2

Suppose that \mathbb{V} is a vector space and $\mathrm{Span}\ \{\mathbf{v}_1,\ldots,\mathbf{v}_n\}=\mathbb{V}.$ If $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ is a linearly independent set in \mathbb{V} , then $k\leq n$. In words, this says that the number of vectors in a linearly independent set will be less than, or equal to, the number of vectors in a spanning set.

Theorem 4.3.3

If $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ are both bases of a vector space \mathbb{V} , then k = n.

Note that this theorem does not say the a vector space will have a unique basis, merely that the number of vectors in a basis is unique.

We call this unique number of basis vectors the dimension of the vector space.

Dimension

Definition: If a vector space $\mathbb V$ has a basis with n vectors, then we say that the dimension of $\mathbb V$ is n and write $\dim \mathbb V = n$

The dimension of the trivial vector space $\mathbb{O} = \{0\}$ is defined to be 0, consistent with our definition that the basis for \mathbb{O} is the empty set.

If a vector space $\mathbb V$ does not have a basis with finitely many elements, then $\mathbb V$ is called **infinite-dimensional**.

We will not be studying the properties of infinite-dimensional spaces in this course.

MATH 225 Module 1 Lecture j Course Slides (Last Updated: December 10, 2013)

Dimension

Examples

- (1) \mathbb{R}^n has standard basis $\{\vec{e}_1,\ldots,\vec{e}_n\}$, so dim $\mathbb{R}^n=n$.
- (2) M(m, n) has a standard basis consisting of the mn matrices with a 1 in one entry and a 0 in the other entries. As such, dim M(m, n) = mn.
- (3) P_n has standard basis $\{1, x, x^2, \dots, x^n\}$, so dim $P_n = n + 1$ (count carefully!)
- (4) \mathcal{F} , $\mathcal{F}(a,b)$, and $\mathcal{C}(a,b)$ are all infinite-dimensional spaces.

Dimension

Example

In the previous lecture, we found that

$$\mathcal{T}_2 = \left\{ \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} -3 & 7 \\ 11 & -5 \end{bmatrix}, \begin{bmatrix} 2 & -8 \\ -12 & 7 \end{bmatrix} \right\}$$

is a basis for Span \mathcal{T} , where

$$\mathcal{T} = \left\{ \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} -3 & 7 \\ 11 & -5 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ 7 & -5 \end{bmatrix}, \begin{bmatrix} 2 & -8 \\ -12 & 7 \end{bmatrix}, \begin{bmatrix} -4 & -1 \\ 0 & 5 \end{bmatrix} \right\}$$

Since \mathcal{T}_2 contains 3 matrices, this means that the dimension of Span \mathcal{T} is 3.