MATH 225

Module 2 Lecture e Course Slides

(Last Updated: December 20, 2013)

Orthogonal Complement

In theory, finding an orthonormal basis is easy. Start with one vector, add a vector that is orthogonal, and then add another that is orthogonal to the first two. Problems arise when dealing with very large spaces

Definition: Let $\mathbb S$ be a subspace of $\mathbb R^n$. We shall say that a vector $\vec x$ is orthogonal to $\mathbb S$ if

$$\vec{x} \cdot \vec{s} = 0$$
 for all $\vec{s} \in \mathbb{S}$

Example

Let
$$\mathbb{S} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
.

Then $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ is orthogonal to \mathbb{S} , because given any element $a \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ 0 \\ b \end{bmatrix}$ of $\operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$, we see that $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ 0 \\ b \end{bmatrix} = 0$. We also see that $\begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} = 3(0) = 0$

Orthogonal Complement

It is also easy to notice that
$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 is orthogonal to \mathbb{S} , since we also have that
$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ 0 \\ b \end{bmatrix} = 0.$$
 But
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 is not orthogonal to \mathbb{S} , since
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 is an element of \mathbb{S} , but
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 1 \neq 0.$$

Note that in order to show that \vec{x} is orthogonal to a subspace S, we only need to show that \vec{x} is orthogonal to the basis vectors for S.

If $\mathcal{A} = \{\vec{a}_1, \dots, \vec{a}_k\}$ is a spanning set for \mathbb{S} , then every element \vec{s} of \mathbb{S} can be written as $s_1\vec{a}_1 + \dots + s_k\vec{a}_k$ for some

And if \vec{x} is orthogonal every \vec{a}_i for $1 \le i \le k$, then we have the following:

$$\vec{x} \cdot \vec{s} = \vec{x} \cdot (s_1 \vec{a}_1 + \dots + s_k \vec{a}_k)$$

$$= (\vec{x} \cdot s_1 \vec{a}_1) + \dots + (\vec{x} \cdot s_k \vec{a}_k)$$

$$= s_1 (\vec{x} \cdot \vec{a}_1) + \dots + s_k (\vec{x} \cdot \vec{a}_k)$$

$$= 0$$

If \vec{x} is orthogonal to \mathbb{S} , then $t\vec{x}$ is orthogonal to \mathbb{S} for all scalars $t \in \mathbb{R}$, since $(t\vec{x}) \cdot \vec{s} = t(\vec{x} \cdot \vec{s}) = t(0) = 0$. Also, if both \vec{x} and \vec{y} are orthogonal to \hat{S} , then so is $\vec{x} + \vec{y}$, since $(\vec{x} + \vec{y}) \cdot \vec{s} = (\vec{x} \cdot \vec{s}) + (\vec{y} \cdot \vec{s}) = 0 + 0 = 0$. Since $\vec{0} \cdot \vec{v} = 0$ for any vector \vec{v} , then we have shown that the set of all vectors orthogonal to S is never the empty set. And this means that we have shown that the set of all vectors orthogonal to $\mathbb S$ is itself a subspace of $\mathbb R^n$, since it is a non-empty subset of \mathbb{R}^n that is closed under addition and scalar multiplication.

MATH 225

Module 2 Lecture e Course Slides (Last Updated: December 20, 2013)

Orthogonal Complement

Definition: We call the set of all vectors orthogonal to \mathbb{S} the orthogonal complement of \mathbb{S} and denote it \mathbb{S}^{\perp} . That is

$$\mathbb{S}^{\perp} = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \cdot \vec{s} = 0 \text{ for all } \vec{s} \in \mathbb{S} \}$$

Example

Find a basis for \mathbb{S}^{\perp} , where $\mathbb{S}=\operatorname{Span}\left\{\begin{bmatrix}1\\2\\0\\1\end{bmatrix},\begin{bmatrix}3\\6\\1\\4\end{bmatrix}\right\}$

A vector is orthogonal to $\mathbb S$ if it is orthogonal to the vectors in its spanning set, so we are looking for vectors

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ such that } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = 0 \text{ and } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 6 \\ 1 \\ 4 \end{bmatrix} = 0. \text{ This is the same as looking for solutions to the following }$$

system:

$$x_1 +2x_2 +x_4 = 0$$

 $3x_1 +6x_2 +x_3 +4x_4 = 0$

To solve this homogeneous system, we row reduce its coefficient matrix:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 3 & 6 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Orthogonal Complement

From our RREF matrix, we see that our system is equivalent to

$$x_1 +2x_2 +x_4 = 0$$

 $x_3 +x_4 = 0$

Replacing the variable x_2 with the parameter s and the variable x_4 with the parameter t, we get that the general solution to this system is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2s - t \\ s \\ -t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

The general solution to our system is a list of all the vectors \vec{x} that are orthogonal to \mathbb{S} , so we see that

$$\left\{ \begin{bmatrix} -2\\1\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix} \right\}$$
 is a spanning set for \mathbb{S}^{\perp}

Moreover, these vectors are not a scalar multiple of each other, and thus are linearly independent, so we have that

$$\left\{ \begin{bmatrix} -2\\1\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix} \right\}$$
 is a basis for \mathbb{S}^{\perp} .

MATH 225 Module 2 Lecture e Course Slides (Last Updated: December 20, 2013)

Orthogonal Complement

Theorem 7.2.1

Let $\mathbb S$ be a k-dimensional subspace of $\mathbb R^n$. Then

- 1. $\mathbb{S} \cap \mathbb{S}^{\perp} = {\vec{0}}$
- 2. $\dim(\mathbb{S}^{\perp}) = n k$
- 3. If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is an orthonormal basis for \mathbb{S} and $\{\vec{v}_{k+1},\ldots,\vec{v}_n\}$ is an orthonormal basis for \mathbb{S}^\perp , then $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{v}_{k+1},\ldots,\vec{v}_n\}$ is an orthonormal basis for \mathbb{R}^n

Proof

To see that $\mathbb{S} \cap \mathbb{S}^{\perp} = \{\vec{0}\}, \text{ let } \vec{x} \in \mathbb{S} \cap \mathbb{S}^{\perp}.$

Then \vec{x} is an element of \mathbb{S}^{\perp} , so \vec{x} is orthogonal to every element of \mathbb{S} .

But we also have that \vec{x} is an element of \mathbb{S} , so this means that \vec{x} is orthogonal to itself. That is, $\vec{x} \cdot \vec{x} = 0$, which means that $\vec{x} = \vec{0}$.

Next, to see that $\dim(\mathbb{S}^{\perp}) = n - k$, let A be the matrix whose rows are the basis vectors of \mathbb{S} . Then A is a $k \times n$ matrix, and \mathbb{S} is the rowspace of A. This means that the rank of A is the same as the dimension of \mathbb{S} , so $\operatorname{rank}(A) = k$.

But we also have that \mathbb{S}^{\perp} is the nullspace of A, and thus the dimension of \mathbb{S}^{\perp} is the nullity of A. By the Rank Theorem, we know that $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$, so the $\dim(\mathbb{S}^{\perp}) = \operatorname{nullity}(A) = n - \operatorname{rank}(A) = n - k$.

Orthogonal Complement

Finally, to see that $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{v}_{k+1},\ldots,\vec{v}_n\}$ is an orthonormal basis for \mathbb{R}^n , remember that we, in fact, only need to show that $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{v}_{k+1},\ldots,\vec{v}_n\}$ is an orthonormal set (as it will then automatically be a basis). That means we need to show that $\vec{v}_i \cdot \vec{v}_j = 0$ whenever $i \neq j$. We will break this into four different scenarios:

- (a) $1 \le i, j \le k$. Then both \vec{v}_i and \vec{v}_j are in $\{\vec{v}_1, \dots, \vec{v}_k\}$, which is an orthonormal set, so we know that $\vec{v}_i \cdot \vec{v}_j = 0$.
- (b) $1 \le i \le k$ and $k+1 \le j \le n$. Then $\vec{v}_i \in \mathbb{S}$ and $\vec{v}_j \in \mathbb{S}^\perp$, so by the definition of \mathbb{S}^\perp we know that $\vec{v}_i \cdot \vec{v}_j = 0$.
- (c) $1 \le j \le k$ and $k+1 \le i \le n$. Then $\vec{v}_i \in \mathbb{S}^\perp$, so by the definition of \mathbb{S}^\perp we know that $\vec{v}_i \cdot \vec{v}_j = 0$.
- (d) $k+1 \le i, j \le n$. Then both \vec{v}_i and \vec{v}_j are in $\{\vec{v}_{k+1}, \dots, \vec{v}_n\}$, which is an orthonormal set, so we know that $\vec{v}_i \cdot \vec{v}_j = 0$.