MATH 225 Module 1 Lecture g Course Slides (Last Updated: December 10, 2013)

Span and Linear Independence in Vector Spaces

Theorem 4.2.2

If $\{v_1, \dots, v_k\}$ is a set of vectors in a vector space \mathbb{V} , and \mathbb{S} is the set of all possible linear combinations of these vectors,

$$\mathbb{S} = \{t_1 \mathbf{v}_1 + \dots + t_k \mathbf{v}_k \mid t_1, \dots, t_k \in \mathbb{R}\}\$$

then $\mathbb S$ is a subspace of $\mathbb V$.

Proof

S0: Since \mathbb{V} is closed under addition and scalar multiplication, we know that every $t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k$ is an element of \mathbb{V} , and thus \mathbb{S} is a subset of \mathbb{V} .

And $\mathbb S$ is not empty since, at the least, $\mathbf v_1 \in \mathbb S$.

S1: Let
$$\mathbf{x} = s_1 \mathbf{v}_1 + \dots + s_k \mathbf{v}_k$$
 and $\mathbf{y} = t_1 \mathbf{v}_1 + \dots + t_k \mathbf{v}_k$ be elements of \mathbb{S} .

Then

$$\mathbf{x} + \mathbf{y} = (s_1 \mathbf{v}_1 + \dots + s_k \mathbf{v}_k) + (t_1 \mathbf{v}_1 + \dots + t_k \mathbf{v}_k)$$

$$= s_1 \mathbf{v}_1 + t_1 \mathbf{v}_1 + \dots + s_k \mathbf{v}_k + t_k \mathbf{v}_k \qquad \text{by V2 and V5}$$

$$= (s_1 + t_1) \mathbf{v}_1 + \dots + (s_k + t_k) \mathbf{v}_k \qquad \text{by V8}$$

And so we see that $x + y \in S$.

Span and Linear Independence in Vector Spaces

Theorem 4.2.2

If $\{v_1, \dots, v_k\}$ is a set of vectors in a vector space \mathbb{V} , and \mathbb{S} is the set of all possible linear combinations of these vectors,

$$\mathbb{S} = \{t_1 \mathbf{v}_1 + \dots + t_k \mathbf{v}_k \mid t_1, \dots, t_k \in \mathbb{R}\}\$$

then $\mathbb S$ is a subspace of $\mathbb V$.

Proof

S2: Let $\mathbf{x} = s_1 \mathbf{v}_1 + \dots + s_k \mathbf{v}_k$ be an element of \mathbb{S} , and let $t \in \mathbb{R}$.

Then

$$t\mathbf{x} = t(s_1\mathbf{v}_1 + \dots + s_k\mathbf{v}_k)$$

$$= t(s_1\mathbf{v}_1) + \dots + t(s_k\mathbf{v}_k) \qquad \text{by V9}$$

$$= (ts_1)\mathbf{v}_1 + \dots + (ts_k)\mathbf{v}_k \qquad \text{by V7}$$

And so we see that $t\mathbf{x} \in \mathbb{S}$.

And since properties S0, S1, and S2 hold, $\mathbb S$ is a subspace of $\mathbb V.$

MATH 225 Module 1 Lecture g Course Slides (Last Updated: December 10, 2013)

Example

The set of all diagonal 2×2 matrices is a vector space, since it is the set of all possible linear combinations of $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in M(2,2).

Span and Linear Independence in Vector Spaces

Definition: If $\mathbb S$ is the subspace of the vector space $\mathbb V$ consisting of all linear combinations of the vectors $\mathbf v_1,\dots,\mathbf v_k\in\mathbb V$, then $\mathbb S$ is called the subspace spanned by $\mathcal B=\{\mathbf v_1,\dots,\mathbf v_k\}$, and we say that the set $\mathcal B$ spans $\mathbb S$. The set $\mathcal B$ is called a spanning set for the subspace $\mathbb S$. We denote $\mathbb S$ by

$$\mathbb{S} = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \text{Span } \mathcal{B}$$

Definition: If $B = \{v_1, \dots, v_k\}$ is a set of vectors in a vector space \mathbb{V} , then B is said to be linearly independent if the only solution to the equation

$$t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$$

is $t_1 = \cdots = t_k = 0$; otherwise, \mathcal{B} is said to be linearly dependent.

MATH 225 Module 1 Lecture g Course Slides (Last Updated: December 10, 2013)

Span and Linear Independence in Vector Spaces

Theorem 4.2.a

Any set that contains the zero vector is linearly dependent.

Proof

Let $\mathbb V$ be a vector space, and let $\mathcal A=\{0,x_1,x_2,\dots,x_k\}$ be a set of vectors from $\mathbb V$ that contains the zero vector.

To see that $\boldsymbol{\mathcal{A}}$ is linearly dependent, we need to find a non-trivial solution to the equation

$$t_0\mathbf{0} + t_1\mathbf{x}_1 + t_2\mathbf{x}_2 + \dots + t_k\mathbf{x}_k = \mathbf{0}$$

Setting $t_0 = 1$, and $t_1 = t_2 = \cdots = t_k = 0$ is such a solution.

First, we note that the scalar multiplicative identity property (V10) tells us that $1 \cdot 0 = 0$, so setting $t_0 = 1$ means we can replace $t_0 0$ with 0.

Next we note that, by Theorem 4.2.1, $0\mathbf{x}_i = \mathbf{0}$ for all $1 \le i \le k$, so setting $t_1 = t_2 = \cdots = t_k = 0$ means we can replace all the $t_i\mathbf{x}_i$ with $\mathbf{0}$.

And so, our equation becomes

$$0 + 0 + 0 + \dots + 0 = 0$$

which is true thanks to repeated uses of the additive identity property (V3).