MATH 225 Module 1 Lecture e Course Slides (Last Updated: December 6, 2013)

Vector Spaces

Definition: A vector space over \mathbb{R} is a set \mathbb{V} together with an operation of addition, usually denoted $\mathbf{x} + \mathbf{y}$ for any $x, y \in V$, and an operation scalar multiplication, usually denoted sx for any $x \in V$ and $s \in \mathbb{R}$, such that for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{V}$ and $s, t, \in \mathbb{R}$ we have the following properties: V1. $x + y \in V$ closed under addition V2. (x + y) + z = x + (y + z)addition is associative **V3.** There is an element $0 \in \mathbb{V}$, (called the zero vector) such that x + 0 = x = 0 + xadditive identity **V4.** For each $x \in V$, there exists element -x such that x + (-x) = 0additive inverse V5. x + y = y + xaddition is commutative V6. sx ∈ Vclosed under scalar multiplication $V7. s(t\mathbf{x}) = (st)\mathbf{x}$ scalar multiplication is associative V8. (s+t)x = sx + txscalar addition is distributive scalar multiplication is distributive V9. s(x + y) = sx + sy

Note: In general, an element of a vector space $\mathbb V$ is known as a vector. As elements of $\mathbb R^n$ are also known as vectors, this can be confusing, so to help we use the notation $\mathbf x$ to mean a vector from a general vector space, and reserve the symbol $\vec x$ to mean an element of $\mathbb R^n$.

scalar multiplicative identity

Vector Spaces

V10. 1x = x

Examples

We have already seen that \mathbb{R}^n is a vector space, as well as the set of $m \times n$ matrices, and polynomials of degree up to n.

Notation

- 1. We write M(m, n) for the vector space of $m \times n$ matrices.
- 2. We write P_n for the vector space of polynomials of degree up to n.
- 3. \mathcal{F} : the set of all functions from \mathbb{R} to \mathbb{R} .
- 4. $\mathcal{F}(a,b)$: the set of all functions from the interval (a,b) to \mathbb{R} .

MATH 225 Module 1 Lecture e Course Slides (Last Updated: December 6, 2013)

V	e/e	ct	0	r (St	oa	C	es

Ν	lon-	Stand	lard \	/ec	tor S	paces
---	------	-------	--------	-----	-------	-------

Things get interesting when non-standard definitions of addition and scalar multiplication are used. In these cases, the usual notation for addition and scalar multiplication are replaced with the symbols \oplus and \odot . (Sometimes $\oplus_{\mathbb{V}}$ and $\odot_{\mathbb{V}}$ are used if we need to keep track of which vector space we are referring to.)

Vector Spaces

Non-Standard Vector Spaces

Example

```
Let V = \{(a, b) \mid a, b \in \mathbb{R}, b > 0\}.
```

We will define addition in \mathbb{V} by $(a,b)\oplus(c,d)=(ad+bc,bd)$ and we define scalar multiplication in \mathbb{V} by $t\odot(a,b)=(tab^{t-1},b^t)$.

Now let's show that $\mathbb V$ is a vector space, paying close attention to how the axioms look with our unusual definitions. To that end, let $(a,b),(c,d),(e,f)\in\mathbb V$, and let $s,t\in\mathbb R$.

V1. $(a,b) \oplus (c,d) = (ad+bc,bd)$, where $ad+bc \in \mathbb{R}$ and $bd \in \mathbb{R}$, and since both b>0 and d>0, we have that bd>0.

This means that $(ad + bc, bd) \in \mathbb{V}$, and thus $(a, b) \oplus (c, d) \in \mathbb{V}$.

V2.
$$((a,b) \oplus (c,d)) \oplus (e,f) = (ad+bc,bd) \oplus (e,f) = ((ad+bc)f + (bd)e,(bd)f)$$

= $(adf+bcf+bde,bdf) = (a(df)+b(cf+de),b(df))$
= $(a,b) \oplus (cf+de,df) = (a,b) \oplus ((c,d) \oplus (e,f)).$

Note that, thanks to V1, we don't need to worry about whether or not any of the intermediate steps are in V.

MATH 225

Module 1 Lecture e Course Slides (Last Updated: December 6, 2013)

Vector Spaces

Non-Standard Vector Spaces

Example

Let $V = \{(a, b) \mid a, b \in \mathbb{R}, b > 0\}.$

We will define addition in \mathbb{V} by $(a,b) \oplus (c,d) = (ad+bc,bd)$ and we define scalar multiplication in \mathbb{V} by $t \odot (a,b) = (tab^{t-1},b^t)$.

Now let's show that $\mathbb V$ is a vector space, paying close attention to how the axioms look with our unusual definitions. To that end, let $(a,b),(c,d),(e,f)\in\mathbb V$, and let $s,t\in\mathbb R$.

V3. To prove this property, we need to find an element $\mathbf{0}$ of \mathbb{V} such that $(a,b)\oplus\mathbf{0}=(a,b)$.

Let's assume that $\mathbf{0} = (x, y)$.

Then we want $(a, b) \oplus (x, y) = (ay - bx, by) = (a, b)$.

So we want b = by, which means y = 1, and then we want ay - bx = a, and plugging in y = 1, this becomes a - bx = a, so -bx = 0.

Now $b \neq 0$, since b > 0, so the only way to have -bx = 0 is to have x = 0.

All this work leads us to the guess that $\mathbf{0} = (0, 1)$.

Now we need to prove it.

First we note that $(0, 1) \in \mathbb{V}$, since $0, 1 \in \mathbb{R}$ and 1 > 0.

Next, we note that $(a, b) \oplus (0, 1) = ((a)(1) + (b)(0), (b)(1)) = (a, b)$ and

 $(0,1) \oplus (a,b) = ((0)(b) + (1)(a), (1)(b)) = (a,b).$

And so we see that property 3 holds, with (0, 1) as our zero vector.

Vector Spaces

Non-Standard Vector Spaces

Example

Let $V = \{(a, b) \mid a, b \in \mathbb{R}, b > 0\}.$

We will define addition in \mathbb{V} by $(a,b) \oplus (c,d) = (ad+bc,bd)$ and we define scalar multiplication in \mathbb{V} by $t \odot (a,b) = (tab^{t-1},b^t)$.

Now let's show that $\mathbb V$ is a vector space, paying close attention to how the axioms look with our unusual definitions. To that end, let $(a,b),(c,d),(e,f)\in\mathbb V$, and let $s,t\in\mathbb R$.

V4. We found in **V3** that 0 = (0, 1).

Now, given (a, b), we need to find $-(a, b) \in \mathbb{V}$.

So let's look for (w, z) such that $(a, b) \oplus (w, z) = (0, 1)$.

Well, $(a, b) \oplus (w, z) = (az + bw, bz)$, so we need bz = 1 and az + bw = 0.

From bz=1 we get that $z=\left(\frac{1}{b}\right)$. (Note that we can divide by b, since b>0.)

Plugging this into az + bw = 0, we get $a\left(\frac{1}{b}\right) + bw = 0$, so $w = \left(-\frac{a}{b^2}\right)$.

So we now guess that $-(a,b) = \left(-\frac{a}{b^2}, \frac{1}{b}\right)$.

First, we note that since b > 0, $\frac{1}{b} > 0$, so $\left(-\frac{a}{b^2}, \frac{1}{b}\right) \in \mathbb{V}$.

Next, we see that $(a,b) \oplus \left(-\frac{a}{b^2}, \frac{1}{b}\right) = \left(a\left(\frac{1}{b}\right) + b\left(-\frac{a}{b^2}\right), b\left(\frac{1}{b}\right)\right) = \left(\frac{a}{b} - \frac{a}{b}, 1\right) = (0,1)$, as desired.

MATH 225 Module 1 Lecture e Course Slides

(Last Updated: December 6, 2013)

Vector Spaces

Non-Standard Vector Spaces

Example

Let $V = \{(a, b) \mid a, b \in \mathbb{R}, b > 0\}.$

We will define addition in \mathbb{V} by $(a,b) \oplus (c,d) = (ad+bc,bd)$ and we define scalar multiplication in \mathbb{V} by $t \odot (a,b) = (tab^{t-1},b^t)$.

Now let's show that $\mathbb V$ is a vector space, paying close attention to how the axioms look with our unusual definitions. To that end, let $(a,b),(c,d),(e,f)\in\mathbb V$, and let $s,t\in\mathbb R$.

V5. $(a, b) \oplus (c, d) = (ad + bc, bd) = (cb + da, db) = (c, d) \oplus (a, b)$

V6. $s \odot (a, b) = (sab^{s-1}, b^s).$

Since b > 0, $b^s > 0$ for any s, and of course sab^{s-1} , $b^s \in \mathbb{R}$, so $(sab^{s-1}, b^s) \in \mathbb{V}$, which means $s \odot (a, b) \in \mathbb{V}$.

V7.
$$s \odot (t \odot (a,b)) = s \odot ((tab^{t-1},b^t) = (stab^{t-1}(b^t)^{s-1},(b^t)^s) = (stab^{t-1}b^{ts-t},b^{ts})$$

= $(stab^{t-1+ts-t},b^{ts}) = (stab^{ts-1},b^{ts}) = (stab^{st-1},b^{st}) = (sta) \odot (a,b)$

V8.
$$(s+t) \odot (a,b) = ((s+t)ab^{s+t-1},b^{s+t}) = (sab^{s-1}b^t + tab^{t-1}b^s,b^sb^t)$$

= $(sab^{s-1},b^s) \oplus (tab^{t-1},b^t) = (s\odot(a,b)) \oplus (t\odot(a,b))$

V9.
$$s \odot ((a,b) \oplus (c,d)) = s \odot (ad + bc,bd) = (s(ad + bc)(bd)^{s-1},(bd)^s) = (sad(bd)^{s-1} + sbc(bd)^{s-1},b^sd^s) = (sab^{s-1}d^s + scd^{s-1}b^s,b^sd^s) = (sab^{s-1},b^s) \oplus (scd^{s-1},d^s) = (s \odot (a,b)) \oplus (s \odot (c,d)).$$

V10.
$$1 \odot (a, b) = (1ab^{1-1}, b^1) = (ab^0, b) = (a(1), b) = (a, b).$$

Vector Spaces

Theorem 4.2.1

Let $\ensuremath{\mathbb{V}}$ be a vector space. Then

- 1. 0x = 0 for all $x \in \mathbb{V}$
- 2. $(-1)\mathbf{x} = -\mathbf{x}$ for all $\mathbf{x} \in \mathbb{V}$
- 3. $t\mathbf{0} = \mathbf{0}$ for all $t \in \mathbb{R}$

MATH 225

Module 1 Lecture e Course Slides (Last Updated: December 6, 2013)

Vector Spaces

Proof of (-1)x = -x for all $x \in \mathbb{V}$

Up until now we have been taking it as a notational convention that (-1)x = -x.

But in this section we introduce the notation $-\mathbf{x}$ to mean the additive inverse of \mathbf{x} and not necessarily the scalar product of -1 times \mathbf{x} .

First we prove that the additive inverse is unique.

That is to say, if x + y = 0 and x + z = 0, then y = z.

To see this, let x, y, and z be as stated, and notice that

Vector Spaces

Proof of
$$(-1)\mathbf{x} = -\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{V}$

Thanks to the uniqueness of the additive inverse, we now know that in order to show that some y equals the additive inverse of x (i.e., to show y=-x), we need to show that it satisfies the condition in V4: x+(-x)=0. In our particular case, we suspect that -x is (-1)x, and so we will look at x+(-1)x

$$\mathbf{x} + (-1)\mathbf{x} = (1)\mathbf{x} + (-1)\mathbf{x}$$
 by the scalar multiplicative identity
$$= (1 + (-1))\mathbf{x}$$
 since scalar addition is distributive
$$= (0)\mathbf{x}$$
 operation of numbers in \mathbb{R}
$$= \mathbf{0}$$
 by Theorem 4.2.1 (1.)

And since $\mathbf{x} + (-1)\mathbf{x} = \mathbf{0}$, we know that $(-1)\mathbf{x} = -\mathbf{x}$.