MATH 235 Module 07 Lecture 1 Course Slides (Last Updated: March 26, 2014)

n T			

- We will review the definition of the four fundamental subspaces of a matrix.
- Prove a theorem which gives us an easy way to find a basis for the columnspace of a matrix.

Fundamental Subspaces of a Matrix

Definition: Let A be an $m \times n$ matrix. The four fundamental subspaces of A are as follows:

- 1. The columnspace of A is defined by $\operatorname{Col}(A) = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$.
- 2. The rowspace of A is defined by $\operatorname{Row}(A) = \{A^T \vec{x} \mid \vec{x} \in \mathbb{R}^m\} = \operatorname{Col}(A^T)$.
- 3. The nullspace of A is defined by $\text{Null}(A) = \{\vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0}\}.$
- 4. The left nullspace of A is defined by $\text{Null}(A^T) = \{\vec{x} \in \mathbb{R}^m \mid A^T \vec{x} = \vec{0}\}.$

Theorem 7.1.1

If A is an $m \times n$ matrix, then $\operatorname{Col}(A)$ and $\operatorname{Null}(A^T)$ are subspaces of \mathbb{R}^m , and $\operatorname{Row}(A)$ and $\operatorname{Null}(A)$ are subspaces of \mathbb{R}^n .

MATH 235 Module 07 Lecture 1 Course Slides (Last Updated: March 26, 2014)

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof

If A is the zero matrix, then the result is trivial. Assume that rank(A) = r > 0.

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof

If A is the zero matrix, then the result is trivial. Assume that rank(A) = r > 0.

Denote the columns of the reduced row echelon form (RREF) R of A by $\vec{r}_1,\ldots,\vec{r}_n$.

Since $\operatorname{rank}(A) = r$, R contains r leading ones. Let t_1, \ldots, t_r denote the indices of the columns of R which contain leading ones.

We will show $\mathcal{B} = \{\vec{r}_{t_1}, \dots, \vec{r}_{t_r}\}$ is a basis for $\operatorname{Col}(R)$.

Example

$$A = \begin{bmatrix} 1 & 1 & 3 & -1 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{r}_4 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

We have that $t_1 = 1$ and $t_2 = 3$ as these are the indices of the columns of R containing leading 1s.

$$\mathcal{B} = \{\vec{r}_{t_1}, \vec{r}_{t_2}\} = \{\vec{r}_1, \vec{r}_3\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is a basis for } \mathrm{Col}(R).$$

MATH 235 Module 07 Lecture 1 Course Slides

(Last Updated: March 26, 2014)

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

 $\dim \operatorname{Col}(A) = \operatorname{rank}(A)$

Proof

By definition of RREF, the vectors $\vec{r}_{t_1}, \dots, \vec{r}_{t_r}$ are standard basis vectors of \mathbb{R}^n and hence form a linearly independent set.

Moreover, every column of $\it R$ which does not contain a leading one can be written as a linear combination of the columns which do contain leading ones.

So, we also have $\operatorname{Span} \mathcal{B} = \operatorname{Col}(R)$.

Therefore, \mathcal{B} is a basis for Col(R) as claimed.

Example

$$A = \begin{bmatrix} 1 & 1 & 3 & -1 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{r}_4 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

We have that $t_1 = 1$ and $t_2 = 3$ as these are the indices of the columns of R containing leading 1s.

$$\mathcal{B} = \{\vec{r}_{t_1}, \vec{r}_{t_2}\} = \{\vec{r}_1, \vec{r}_3\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is a basis for } \text{Col}(R).$$

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof

By definition of RREF, the vectors $\vec{r}_{t_1}, \dots, \vec{r}_{t_r}$ are standard basis vectors of \mathbb{R}^n and hence form a linearly independent set.

Moreover, every column of R which does not contain a leading one can be written as a linear combination of the columns which do contain leading ones.

So, we also have $\operatorname{Span} \mathcal{B} = \operatorname{Col}(R)$.

Therefore, \mathcal{B} is a basis for Col(R) as claimed.

Denote the columns of A by $\vec{a}_1, \ldots, \vec{a}_n$.

We will show $\mathcal{C} = \{\vec{a}_{t_1}, \dots, \vec{a}_{t_r}\}$ is a basis for $\operatorname{Col}(A)$ using the fact that \mathcal{B} is a basis for $\operatorname{Col}(R)$.

Example

$$A = \begin{bmatrix} 1 & 1 & 3 & -1 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{r}_4 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

We have that $t_1 = 1$ and $t_2 = 3$ as these are the indices of the columns of R containing leading 1s.

$$\mathcal{B} = \{\vec{r}_{t_1}, \vec{r}_{t_2}\} = \{\vec{r}_1, \vec{r}_3\} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \text{ is a basis for } \operatorname{Col}(R).$$

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \vec{a}_4 = \begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}$$

MATH 235

Module 07 Lecture 1 Course Slides (Last Updated: March 26, 2014)

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof

By definition of RREF, the vectors $\vec{r}_{t_1}, \dots, \vec{r}_{t_r}$ are standard basis vectors of \mathbb{R}^n and hence form a linearly independent set.

Moreover, every column of $\it R$ which does not contain a leading one can be written as a linear combination of the columns which do contain leading ones.

So, we also have $\operatorname{Span} \mathcal{B} = \operatorname{Col}(R)$.

Therefore, \mathcal{B} is a basis for Col(R) as claimed.

Denote the columns of A by $\vec{a}_1, \dots, \vec{a}_n$.

We will show $C = \{\vec{a}_{t_1}, \dots, \vec{a}_{t_r}\}$ is a basis for $\operatorname{Col}(A)$ using the fact that \mathcal{B} is a basis for $\operatorname{Col}(R)$.

Example

$$A = \begin{bmatrix} 1 & 1 & 3 & -1 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{r}_4 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

We have that $t_1 = 1$ and $t_2 = 3$ as these are the indices of the columns of R containing leading 1s.

$$\mathcal{B} = \{\vec{r}_{t_1}, \vec{r}_{t_2}\} = \{\vec{r}_1, \vec{r}_2\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is a basis for } \mathrm{Col}(R).$$

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \vec{a}_4 = \begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}$$

$$\vec{a}_{t_1} = \vec{a}_1, \vec{a}_{t_2} = \vec{a}_3$$

Show $C = \{\vec{a}_{t_1}, \vec{a}_{t_2}\} = \{\vec{a}_1, \vec{a}_3\}$ is a basis for Col(A).

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof

By definition of RREF, the vectors $\vec{r}_{t_1}, \dots, \vec{r}_{t_r}$ are standard basis vectors of \mathbb{R}^n and hence form a linearly independent set.

Moreover, every column of R which does not contain a leading one can be written as a linear combination of the columns which do contain leading ones.

So, we also have $\operatorname{Span} \mathcal{B} = \operatorname{Col}(R)$.

Therefore, \mathcal{B} is a basis for Col(R) as claimed.

Denote the columns of A by $\vec{a}_1, \dots, \vec{a}_n$.

We will show $\mathcal{C} = \{\vec{a}_{t_1}, \dots, \vec{a}_{t_r}\}$ is a basis for $\operatorname{Col}(A)$ using the fact that \mathcal{B} is a basis for $\operatorname{Col}(R)$.

To do this, we need to find a relationship between the vectors in ${\cal B}$ and ${\cal C}.$

Example

$$A = \begin{bmatrix} 1 & 1 & 3 & -1 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{r}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{r}_4 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

We have that $t_1 = 1$ and $t_2 = 3$ as these are the indices of the columns of R containing leading 1s.

$$\mathcal{B} = \{\vec{r}_{t_1}, \vec{r}_{t_2}\} = \{\vec{r}_1, \vec{r}_2\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is a basis for } \operatorname{Col}(R).$$

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{a}_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \vec{a}_4 = \begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}$$

$$\vec{a}_{t_1} = \vec{a}_1, \vec{a}_{t_2} = \vec{a}_3.$$

Show $C = {\vec{a}_{t_1}, \vec{a}_{t_2}} = {\vec{a}_1, \vec{a}_3}$ is a basis for Col(A).

MATH 235

Module 07 Lecture 1 Course Slides (Last Updated: March 26, 2014)

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof (continued)

Since R is the reduced row echelon form of A there exists a sequence of elementary matrices E_1, \ldots, E_k such that $E_k \cdots E_1 A = R$. Let $E = E_k \cdots E_1$.

Recall that every elementary matrix is invertible, hence $E^{-1}=E_1^{-1}\cdots E_k^{-1}$ exists.

Then

$$R = EA = [E\vec{a}_1 \cdots E\vec{a}_n]$$

Then $\vec{r}_i = E\vec{a}_i$, or $\vec{a}_i = E^{-1}\vec{r}_i$.

Consider

$$c_1\vec{a}_{t_1} + \dots + c_r\vec{a}_{t_r} = \vec{0}$$

Multiply both sides by E to get

$$\begin{split} E(c_1\vec{a}_{t_1}+\cdots+c_r\vec{a}_{t_r}) &= E\vec{0} \\ c_1E\vec{a}_{t_1}+\cdots+c_rE\vec{a}_{t_r} &= \vec{0} \\ c_1\vec{r}_{t_1}+\cdots+c_r\vec{r}_{t_r} &= \vec{0} \end{split}$$

 $c_1 = \cdots = c_r = 0$ since $\{\vec{r}_{t_1}, \dots, \vec{r}_{t_r}\}$ is linearly independent.

Thus, C is linearly independent.

Theorem 7.1.2

Let A be an $m \times n$ matrix. The columns of A which correspond to leading ones in the reduced row echelon form of A form a basis for Col(A). Moreover,

$$\dim \operatorname{Col}(A) = \operatorname{rank}(A)$$

Proof (continued)

Pick $\vec{b} \in \text{Col}(A)$. Then there exists a $\vec{x} \in \mathbb{R}^n$ such that

$$\vec{b} = A\vec{x}$$

$$\vec{b} = E^{-1}R\vec{x}$$

$$E\vec{b} = R\vec{x}$$

Therefore, \vec{Eb} is in the columnspace of R and can be written as a linear combination of the basis vectors $\{\vec{r}_{t_1}, \dots, \vec{r}_{t_r}\}$. Hence, we have $d_1, \dots, d_r \in \mathbb{R}$ such that

$$\begin{split} E\vec{b} &= d_1\vec{r}_{t_1} + \dots + d_r\vec{r}_{t_r} \\ \vec{b} &= E^{-1}(d_1\vec{r}_{t_1} + \dots + d_r\vec{r}_{t_r}) \\ \vec{b} &= d_1E^{-1}\vec{r}_{t_1} + \dots + d_rE^{-1}\vec{r}_{t_r} \\ \vec{b} &= d_1\vec{a}_{t_1} + \dots + d_r\vec{a}_{t_r} \end{split}$$

as required.

Thus, we also have $\mathrm{Span}\{\vec{a}_{t_1},\ldots,\vec{a}_{t_r}\}=\mathrm{Col}(A)$.

Therefore, $\{\vec{a}_{t_1}, \dots, \vec{a}_{t_r}\}$ is a basis for Col(A).

Moreover, this implies that $\dim \operatorname{Col}(A) = r = \operatorname{rank}(A)$.