MATH 235 Module 08 Lecture 7 Course Slides (Last Updated: April 23, 2013)

Isomorphisms

Previously

- Vectors in \mathbb{R}^n , as well as matrices, linear mappings, polynomials, and other sets satisfy 10 properties.
- This motivated us to define the abstract concept of a vector space.
- The 10 axioms define a structure for how addition and scalar multiplication work in a vector space.
- All n-dimensional vector spaces should have the same structure.

In This Lecture

. We will develop tools to prove when two vector spaces are the same space.

One-to-One and Onto

Definition: Let $\mathbb V$ and $\mathbb W$ be vector spaces and $L:\mathbb V\to\mathbb W$ be a linear mapping.

- 1. If $L(\vec{v}) = L(\vec{u})$ implies $\vec{v} = \vec{u}$, then L is said to be one-to-one (or injective).
- 2. If for every $\vec{w} \in \mathbb{W}$ there exists a $\vec{v} \in \mathbb{V}$ such that $L(\vec{v}) = \vec{w}$, then L is said to be onto (or surjective).

One-to-One and Onto

Lemma 8.4.1

Let $L: \mathbb{V} \to \mathbb{W}$ be a linear mapping. L is one-to-one if and only if $Ker(L) = \{\vec{0}\}$.

Proof

Assume that L is one-to-one.

Let $\vec{x} \in \text{Ker}(L)$. Then, $L(\vec{x}) = \vec{0}$.

But, $L(\vec{0}) = \vec{0}$. Hence, we have that $L(\vec{x}) = L(\vec{0})$.

Since *L* is one-to-one, this implies that $\vec{x} = \vec{0}$. Therefore, $Ker(L) = {\vec{0}}$.

Assume that $Ker(L) = {\vec{0}}$.

We consider $L(\vec{u}) = L(\vec{v})$.

Then

$$L(\vec{u}) - L(\vec{v}) = \vec{0}$$

$$L(\vec{u} - \vec{v}) = \vec{0}$$

This implies that $\vec{u} - \vec{v} \in \text{Ker}(L)$.

Hence, $\vec{u} - \vec{v} = \vec{0}$. So, $\vec{u} = \vec{v}$.

Thus, L is one-to-one.

Isomorphisms

For two vector spaces $\mathbb V$ and $\mathbb W$ to be the 'same' we want for each vector $\vec v \in \mathbb V$ there to be a unique corresponding vector in $\mathbb W$, and linear combinations of corresponding vectors to result in corresponding vectors.

If for each $\vec{v} \in \mathbb{V}$ there is a unique corresponding vector in \mathbb{W} , then there should be a one-to-one and onto mapping $L: \mathbb{V} \to \mathbb{W}$. Moreover, if linear combinations are going to be preserved, then L must be linear.

Definition: Let $\mathbb V$ and $\mathbb W$ be vector spaces. We say that $\mathbb V$ and $\mathbb W$ are isomorphic if there exists a linear mapping $L:\mathbb V\to\mathbb W$ that is one-to-one and onto. Such a mapping L is called an isomorphism.

Note: Two vector spaces being isomorphic means that the two vector spaces really are the same vector space.

Example

Observe that

$$(1 + 2x + 3x^2 + 4x^3) + (5 + 6x + 7x^2 + 8x^3) = 6 + 8x + 10x^2 + 12x^3$$

and

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

MATH 235 Module 08 Lecture 7 Course Slides

(Last Updated: April 23, 2013)

Isomorphisms

Example

Prove that $P_3(\mathbb{R})$ and $M_{2\times 2}(\mathbb{R})$ are isomorphic.

Solution

Let $L: P_3(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be defined by $L(a+bx+cx^2+dx^3) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Linear. Left as an exercise.

One-To-One: Observe that

$$L(a+bx+cx^2+dx^3) = L(e+fx+gx^2+hx^3) \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Hence, a=e, b=f, c=g, and d=h. Thus, $a+bx+cx^2+dx^3=e+fx+gx^2+hx^3$, so L is one-to-one.

Onto

$$\overline{\text{Pick}} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}). \text{ We see that } L(a+bx+cx^2+dx^3) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ so } L \text{ is onto.}$$

Hence, L is an isomorphism and so $P_3(\mathbb{R})$ and $M_{2 imes 2}(\mathbb{R})$ are isomorphic

Note: If $\mathbb V$ and $\mathbb W$ are isomorphic, then it does not mean every linear mapping $L:\mathbb V\to\mathbb W$ must be an isomorphism. For example, $T:P_3(\mathbb R)\to M_{2\times 2}(\mathbb R)$ defined by $T(a+bx+cx^2+dx^3)=\begin{bmatrix}0&0\\0&0\end{bmatrix}$ is definitely not one-to-one nor onto!

Isomorphisms

Example

Prove that
$$P_2(\mathbb{R})$$
 and $\mathbb{V} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0 \right\}$ are isomorphic.

Solution

Observe that $\{1,x,x^2\}$ is a basis for $P_2(\mathbb{R})$ and $\left\{ \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} \right\}$ is a basis for \mathbb{V} .

Thus, we define $L:P_2(\mathbb{R}) o \mathbb{V}$ by

$$L(a + bx + cx^{2}) = a \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ -a - b - c \end{bmatrix}$$

MATH 235 Module 08 Lecture 7 Course Slides (Last Updated: April 23, 2013)

Isomorphisms

Example

Prove that
$$P_2(\mathbb{R})$$
 and $\mathbb{V} = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0 \right\}$ are isomorphic.

Solution

Linear. Left as an exercise.

One-to-One:

Let
$$a+bx+cx^2 \in \operatorname{Ker}(L)$$
. Then,
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = L(a+bx+cx^2) = \begin{bmatrix} a \\ b \\ c \\ -a-b-c \end{bmatrix}$$

Hence, a=0, b=0, and c=0. Thus, $a+bx+cx^2=0$, so $\mathrm{Ker}(L)=\{0\}$ and so L is one-to-one by Lemma 8.4.1.

<u>Onto:</u> Pick any vector $\vec{v} \in \mathbb{V}$. Since $\vec{v} \in \mathbb{V}$ we can write it as a linear combination of the basis vectors. Say,

$$\vec{v} = a \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Hence, we have that $L(a + bx + cx^2) = \vec{v}$ and so L is also onto

Therefore, L is an isomorphism. So, $P_2(\mathbb{R})$ and \mathbb{V} are isomorphic.