Length and Orthogonality

Last Lecture

- We wanted to find nice bases like the standard basis in \mathbb{R}^n (orthogonal and unit length).
- We defined the concept of an inner product on a vector space.

In This Lecture

. We will be able to define length and orthogonality.

Length and Orthogonality

Theorem 9.1.1

If $\mathbb V$ is an inner product space with inner product $\langle \ , \ \rangle$, then for any $\vec v \in \mathbb V$ we have $\langle \vec v, \vec 0 \rangle = 0$.

Definition: Let \mathbb{V} be an inner product space with inner product $\langle \ , \ \rangle$. The length of $\vec{v} \in \mathbb{V}$ is defined by $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$

Example

Let
$$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 , $B=\begin{bmatrix}2&-1\\0&3\end{bmatrix}\in M_{2 imes2}(\mathbb{R})$. Find $||A||$ and $||B||$

Recall that the standard inner product on $M_{2\times 2}(\mathbb{R})$ is defined by $\langle A,B\rangle=\operatorname{tr}(B^TA)=a_1b_1+a_2b_2+a_3b_3+a_4b_4$.

Solution

By definition, we get

$$||A|| = \sqrt{\langle A, A \rangle} = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}$$
$$||B|| = \sqrt{\langle B, B \rangle} = \sqrt{2^2 + (-1)^2 + 0^2 + 3^2} = \sqrt{14}$$

Length and Orthogonality

Example

In \mathbb{R}^3 under the standard inner product, we have that the length of $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is 1.

However, under the inner product $\langle \vec{x},\vec{y} \rangle = ax_1y_1 + x_2y_2 + x_3y_3$ where a>0, then

$$\|\vec{e}_1\| = \sqrt{\langle \vec{e}_1, \vec{e}_1 \rangle} = \sqrt{a(1)^2 + 0^2 + 0^2} = \sqrt{a}$$

Example

Find the length of 1 in $P_2(\mathbb{R})$ under the inner product defined by $\langle p(x), q(x) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$.

Solution

We have the length of p(x) = 1 is

$$||1|| = \sqrt{\langle 1, 1 \rangle} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

Length and Orthogonality

Definition: Let $\mathbb V$ be an inner product space with inner product $\langle \, , \rangle$. If $\vec v \in \mathbb V$ with $\|\vec v\| = 1$, then $\vec v$ is called a unit vector.

Theorem 9.2.1

Let $ec{v}, ec{w}$ be any two vectors in an inner product space $\mathbb V$ and $t \in \mathbb R$. Then

- 1. $\| ec{v} \| \geq 0$ and $\| ec{v} \| = 0$ if and only if $ec{v} = ec{0}$
- 2. $||t\vec{v}|| = |t|||\vec{v}||$
- 3. $|\langle \vec{v}, \vec{w} \rangle| \le ||\vec{v}|| ||\vec{w}||$
- 4. $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$

In many situations, we will be given a vector \vec{v} in an inner product space $\mathbb V$ and need to find a unit vector \hat{v} in the direction of \vec{v} .

This is called normalizing the vector.

Theorem 9.2.1 part 2 shows us that $\hat{v} = \frac{1}{\|\vec{v}\|} \vec{v}$.

Definition: Let $\mathbb V$ be an inner product space. If $\vec v, \vec w \in \mathbb V$ such that $\langle \vec v, \vec w \rangle = 0$, then we say that $\vec v$ and $\vec w$ are orthogonal. If $\{\vec v_1, \dots, \vec v_k\}$ is a set in $\mathbb V$ such that $\langle \vec v_i, \vec v_j \rangle = 0$ for all $i \neq j$, then $\{\vec v_1, \dots, \vec v_k\}$ is called an orthogonal set.

Length and Orthogonality

Example

In $P_2(\mathbb{R})$, define the inner product by

$$\langle p(x), q(x) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

Determine if p(x) = x and $q(x) = 3x^2 - 2$ are orthogonal.

Solution

We have

$$\langle x, 3x^2 - 2 \rangle = (-1)(1) + 0(-2) + (1)(1) = 0$$

Thus, x and $3x^2 - 2$ are orthogonal.

Example

$$\operatorname{Let} A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 2 & 1 \\ 1 & 7 \end{bmatrix}. \text{ Is the set } \{A, B, C\} \text{ orthogonal in } M_{2 \times 2}(\mathbb{R})?$$

Solution

We have

$$\langle A, B \rangle = 1(-1) + 2(2) + 3(-1) + (-1)(0) = 0$$

 $\langle A, C \rangle = 1(2) + 2(1) + 3(1) + (-1)(7) = 0$
 $\langle B, C \rangle = (-1)(2) + 2(1) + (-1)(1) + 0(7) = -1$

So, B and C are not orthogonal. Therefore, $\{A,B,C\}$ is not orthogonal in $M_{2\times 2}(\mathbb{R})$.

Length and Orthogonality

Example

Show that in \mathbb{R}^2 under the inner product defined by

$$\langle \vec{x}, \vec{y} \rangle = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + 4x_2y_2$$

the vectors $\vec{e}_1=\begin{bmatrix}1\\0\end{bmatrix}$ and $\vec{e}_2=\begin{bmatrix}0\\1\end{bmatrix}$ are not orthogonal.

Solution

We have

$$\langle \vec{e}_1, \vec{e}_2 \rangle = 2(1)(0) - 2(1)(1) - 2(0)(0) + 4(0)(1) = -2$$

So, they are not orthogonal.

Length and Orthogonality

Theorem 9.2.2

Let $\mathbb V$ be an inner product space. If $\{\vec v_1,\ldots,\vec v_k\}$ is an orthogonal set in $\mathbb V$, then

$$||\vec{v}_1 + \dots + \vec{v}_k||^2 = ||\vec{v}_1||^2 + \dots + ||\vec{v}_k||^2$$

The proof is left as an exercise.

Length and Orthogonality

Theorem 9.2.3

Let $\mathbb V$ be an inner product space. If $\{\vec v_1,\dots,\vec v_k\}$ is an orthogonal set of non-zero vectors in $\mathbb V$, then the set $\{\vec v_1,\dots,\vec v_k\}$ is linearly independent.

Proof

Consider

$$c_1\vec{v}_1 + \dots + c_k\vec{v}_k = \vec{0}$$

Then, we get

$$\begin{split} 0 &= \langle 0, \vec{v}_i \rangle = \langle c_1 \vec{v}_1 + \dots + c_k \vec{v}_k, \vec{v}_i \rangle \\ &= c_1 \langle \vec{v}_1, \vec{v}_i \rangle + \dots + c_{i-1} \langle \vec{v}_{i-1}, \vec{v}_i \rangle + c_i \langle \vec{v}_i, \vec{v}_i \rangle + c_{i+1} \langle \vec{v}_{i+1}, \vec{v}_i \rangle + \dots + c_k \langle \vec{v}_k, \vec{v}_i \rangle \\ &= 0 + \dots + 0 + c_i ||\vec{v}_i||^2 + 0 + \dots + 0 \end{split}$$

But, $\vec{v}_i \neq \vec{0}$, so $||\vec{v}_i|| \neq 0$ and thus $c_i = 0$. Since this is valid for $1 \leq i \leq k$, we get that $c_1 = \cdots = c_k = 0$ is the only solution, so $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly independent.

This theorem shows us that if we have an orthogonal set of n non-zero vectors in an n-dimensional inner product space \mathbb{V} , then the set is a basis for \mathbb{V} .

Length and Orthogonality Definition: Let \mathbb{V} be an inner product space. If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthogonal set in \mathbb{V} that is a basis for \mathbb{V} , then we call $\{\vec{v}_1, \dots, \vec{v}_n\}$ an orthogonal basis for \mathbb{V} . **Definition:** Let \mathbb{V} be an inner product space. If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthogonal set of unit vectors in \mathbb{V} that is a basis for \mathbb{V} , then we call $\{\vec{v}_1, \dots, \vec{v}_n\}$ an orthonormal basis for \mathbb{V} .