Linear Mappings

Previously

- . We looked at the four fundamental subspaces of a matrix.
- We saw that linear mappings from \mathbb{R}^n to \mathbb{R}^m are connected to matrices through the matrix of a linear mapping.

In This Lecture

- We will review the connection between columnspace and nullspace of the standard matrix of a linear mapping to the range and kernel of the linear mapping.
- · We will generalize the definition of a linear mapping.

Linear Mappings

Definition: A mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is said to be linear if

$$L(s\vec{x} + t\vec{y}) = sL(\vec{x}) + tL(\vec{y})$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$.

Definition: The range of a linear mapping $L:\mathbb{R}^n \to \mathbb{R}^m$ is defined by

$$\operatorname{Range}(L) = \{ L(\vec{x}) \mid \vec{x} \in \mathbb{R}^n \}$$

Definition: The kernel of a linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is defined by

$$Ker(L) = \{\vec{x} \in \mathbb{R}^n \mid L(\vec{x}) = \vec{0}\}\$$

Definition: The standard matrix of a linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is defined by

$$[L] = \begin{bmatrix} L(\vec{e}_1) & \cdots & L(\vec{e}_n) \end{bmatrix}$$

It satisfies

$$L(\vec{x}) = [L]\vec{x}$$

for all $\vec{x} \in \mathbb{R}^n$.

Linear Mappings	
Theorem 7.2.1	
If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then $\operatorname{Range}(L) = \operatorname{Col}([L])$.	
Proof	
We have	
$Range(L) = \{L(\vec{x}) \mid \vec{x} \in \mathbb{R}^n\}$	
$= \{ [L]\vec{x} \mid \vec{x} \in \mathbb{R}^n \}$ $= \text{Col}([L])$	
$=\operatorname{Cor}([L])$ We get a similar result for the kernel of L .	
Theorem 7.2.2	
If $L:\mathbb{R}^n o \mathbb{R}^m$ is a linear mapping, then $\operatorname{Ker}(L) = \operatorname{Null}([L])$.	
The proof is left as an exercise.	
Linear Mappings	
Linear Mappings Theorem 7.2.3	
Theorem 7.2.3	
Theorem 7.2.3 Let $L:\mathbb{R}^n o \mathbb{R}^m$ be a linear mapping. Then,	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	
Theorem 7.2.3 Let $L:\mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. Then, $\dim\bigl(\mathrm{Range}(L)\bigr) + \dim(\mathrm{Ker}(L)) = \dim(\mathbb{R}^n)$	

General Linear Mappings

We will now look at linear mappings whose domain is a vector space $\mathbb V$ and whose codomain is a vector space $\mathbb W$.

Note: It is important not to assume that any results that held for linear mappings $L: \mathbb{R}^n \to \mathbb{R}^m$ also hold for linear mappings $L: \mathbb{V} \to \mathbb{W}$. Our goal will be to prove which results are the same and which are not.

Definition: Let $\mathbb V$ and $\mathbb W$ be vector spaces. A mapping $L:\mathbb V\to\mathbb W$ is called a linear mapping if

$$L(t\vec{x} + s\vec{y}) = tL(\vec{x}) + sL(\vec{y})$$

for all $\vec{x}, \vec{y} \in \mathbb{V}$ and $s, t \in \mathbb{R}$.

General Linear Mappings

Example

Let
$$L: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$
 be defined by $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b+c)x + (a-b-d)x^2$. (a) Evaluate $L\left(\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}\right)$.

Solution

$$L\left(\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}\right) = [1+2+(-1)]x + (1-2-1)x^2 = 2x - 2x^2$$

MATH 235 Module 07 Lecture 3 Course Slides

(Last Updated: April 17, 2013)

General Linear Mappings

Example

Let $L: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b+c)x + (a-b-d)x^2$.

(b) Find a matrix A such that $L(A) = 2x + x^2$.

Solution

We need to find $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$2x + x^2 = L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b+c)x + (a-b-d)x^2$$

Hence, we need a + b + c = 2 and a - b - d = 1.

Solving this system, we see that one choice is a=3/2, b=1/2, c=0, and d=0 That is,

$$L\left(\begin{bmatrix} 3/2 & 1/2 \\ 0 & 0 \end{bmatrix}\right) = 2x + x^2$$

General Linear Mappings

Example

Let $L: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b+c)x + (a-b-d)x^2$.

(c) Prove that L is linear.

Solution

$$\begin{split} & \operatorname{Let} \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in M_{2\times 2}(\mathbb{R}) \text{ and } s,t \in \mathbb{R}. \\ & L\left(s \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + t \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = L\left(\begin{bmatrix} sa_1 + ta_2 & sb_1 + tb_2 \\ sc_1 + tc_2 & sd_1 + td_2 \end{bmatrix}\right) \\ & = ([sa_1 + ta_2] + [sb_1 + tb_2] + [sc_1 + tc_2])x + ([sa_1 + ta_2] - [sb_1 + tb_2] - [sd_1 + td_2])x^2 \\ & = s[(a_1 + b_1 + c_1)x + (a_1 - b_1 - d_1)x^2] + t[(a_2 + b_2 + c_2)x + (a_2 - b_2 - d_2)x^2] \\ & = sL\left(\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}\right) + tL\left(\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) \end{split}$$

General Linear Mappings

Theorem 8.1.1

Let $\mathbb V$ and $\mathbb W$ be vector spaces and let $L:\mathbb V\to\mathbb W$ be a linear mapping. Then,

$$L(\vec{0}_{\mathbb{V}}) = \vec{0}_{\mathbb{W}}$$

The proof is left as an exercise.

Operations on Linear Mappings

Definition: Let $\mathbb V$ and $\mathbb W$ be vector spaces and let $L:\mathbb V\to\mathbb W$ and $M:\mathbb V\to\mathbb W$ be linear mappings. We define $L+M:\mathbb V\to\mathbb W$ by

$$(L+M)(\vec{v}) = L(\vec{v}) + M(\vec{v}), \quad \text{ for all } \vec{v} \in \mathbb{V}$$

For any $t \in \mathbb{R}$ we define $tL : \mathbb{V} \to \mathbb{W}$ by

$$(tL)(\vec{v}) = tL(\vec{v}), \quad \text{ for all } \vec{v} \in \mathbb{V}$$

Notes:

- We have defined L+M and tL for every vector $\vec{v} \in \mathbb{V}$, so the domain of these mappings is \mathbb{V} .
- Since $L(\vec{v})$ and $M(\vec{v})$ are in \mathbb{W} and $t \in \mathbb{R}$, then $L(\vec{v}) + M(\vec{v})$ and $tL(\vec{v})$ are in \mathbb{W} since \mathbb{W} is closed under addition and scalar multiplication since it is a vector space. Thus, the codomain of L + M and tL is \mathbb{W} .

Operations on Linear Mappings

Theorem 8.1.2

Let $\mathbb V$ and $\mathbb W$ be vector spaces. The set $\mathbb L$ of all linear mappings $L:\mathbb V\to\mathbb W$ is a vector space.

Proof

Let L, M be linear mappings in the set \mathbb{L} .

[V1] To prove that $\mathbb L$ is closed under addition, we need to show that L+M is a linear mapping.

For all $\vec{v}_1, \vec{v}_2 \in \mathbb{V}$ and $s, t \in \mathbb{R}$ we have

$$\begin{split} (L+M)(s\vec{v}_1+t\vec{v}_2) &= L(s\vec{v}_1+t\vec{v}_2) + M(s\vec{v}_1+t\vec{v}_2) \\ &= sL(\vec{v}_1) + tL(\vec{v}_2) + sM(\vec{v}_1) + tM(\vec{v}_2) \\ &= s[L(\vec{v}_1) + M(\vec{v}_1)] + t[L(\vec{v}_2) + M(\vec{v}_2)] \\ &= s(L+M)(\vec{v}_1) + t(L+M)(\vec{v}_2) \end{split}$$

Thus, $L + M \in \mathbb{L}$.

[V2] For any $\vec{v} \in \mathbb{V}$ we have

$$\begin{split} (L+M)(\vec{v}) &= L(\vec{v}) + M(\vec{v}) \\ &= M(\vec{v}) + L(\vec{v}) \text{ since addition in } \mathbb{W} \text{ is commutative} \\ &= (M+L)(\vec{v}) \end{split}$$

Operations on Linear Mappings

Definition: Let $L: \mathbb{V} \to \mathbb{W}$ and $M: \mathbb{W} \to \mathbb{U}$ be linear mappings. We define $M \circ L: \mathbb{V} \to \mathbb{U}$ by $(M \circ L)(\vec{v}) = M(L(\vec{v}))$ for any $\vec{v} \in \mathbb{V}$.

Theorem 8.1.3

If $L: \mathbb{V} \to \mathbb{W}$ and $M: \mathbb{W} \to \mathbb{U}$ are linear mappings, then $M \circ L$ is a linear mapping from \mathbb{V} to \mathbb{U} .

Page 6 of 6 © University of Waterloo and others