Matrix Mappings

In This Lecture

- We will continue our examination of general linear mappings $L: \mathbb{V} \to \mathbb{W}$.
- We will notice some differences between our previous results and this general case.

Matrix Mappings

We now show that every linear mapping $L: \mathbb{V} \to \mathbb{W}$ can also be represented as a matrix mapping. However, we must be careful when dealing with general vector spaces as our domain and codomain.

For example, it is impossible to represent a linear mapping $L: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ as a matrix mapping of the form $L(\vec{x}) = A\vec{x}$ since we can not multiply a matrix A by a polynomial in $P_2(\mathbb{R})$. Moreover, we would require the result to be a 2×2 matrix

To make this work, we must find a way to represent any vector in any vector space as a vector in \mathbb{R}^n . To do this, we will use coordinates.

Definition: If $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for a vector space \mathbb{V} and $\vec{v} = b_1 \vec{v}_1 + \dots + b_n \vec{v}_n \in \mathbb{V}$, then the coordinate vector of \vec{v} with respect to \mathcal{B} is

$$[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

We will use coordinates of a vector to turn polynomials in $P_2(\mathbb{R})$ into a vector in \mathbb{R}^3 .

We can interpret $A[\vec{x}]_{\mathcal{B}}$ as the coordinate vector of the image with respect to some basis for $M_{2\times 2}(\mathbb{R})$.

$$[L(\vec{x})]_{\mathcal{C}} = A[\vec{x}]_{\mathcal{B}}$$

where \mathcal{B} is a basis for $P_2(\mathbb{R})$ and \mathcal{C} is a basis for $M_{2\times 2}(\mathbb{R})$.

Matrix Mappings

Let $L: \mathbb{V} \to \mathbb{W}$ be a linear mapping, let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for \mathbb{V} and \mathcal{C} be a basis for \mathbb{W} . For any $\vec{v} \in \mathbb{V}$ we want to define a matrix A such that

$$[L(\vec{v})]_{\mathcal{C}} = A[\vec{v}]_{\mathcal{B}} \qquad \text{ for all } \vec{v} \in \mathbb{V}$$

Consider the left-hand side $[L(\vec{v})]_C$.

Using properties of linear mappings and coordinates, we get

$$\begin{split} [L(\vec{v})]_C &= [L(b_1\vec{v}_1 + \cdots + b_n\vec{v}_n)]_C \\ &= [b_1L(\vec{v}_1) + \cdots + b_nL(\vec{v}_n)]_C \\ &= b_1[L(\vec{v}_1)]_C + \cdots + b_n[L(\vec{v}_n)]_C \\ &= \left[[L(\vec{v}_1)]_C \quad \cdots \quad [L(\vec{v}_n)]_C \right] \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \\ &= A[\vec{v}]_B \end{split}$$

Thus, we see the desired matrix is

$$A = \begin{bmatrix} [L(\vec{v}_1)]_{\mathcal{C}} & \cdots & [L(\vec{v}_n)]_{\mathcal{C}} \end{bmatrix}$$

Matrix of a Linear mapping

Definition: Suppose $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ is any basis for a vector space \mathbb{V} and \mathcal{C} is any basis for a finite dimensional vector space \mathbb{W} . Then the matrix of $\mathcal{L}: \mathbb{V} \to \mathbb{W}$ with respect to bases \mathcal{B} and \mathcal{C} is

$$_{\mathcal{C}}[L]_{\mathcal{B}} = \begin{bmatrix} [L(\vec{v}_1)]_{\mathcal{C}} & \cdots & [L(\vec{v}_n)]_{\mathcal{C}} \end{bmatrix}$$

It satisfies

$$[L(\vec{v})]_{\mathcal{C}} = \ _{\mathcal{C}}[L]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}, \quad \text{ for all } \vec{v} \in \mathbb{V}$$

Note the following:

- The forward subscript of the matrix of the linear mapping is the basis of the domain and the backward subscript is the basis of the codmain.
- If \(\mathbb{V} = \mathbb{R}^n\) and \(\mathbb{W} = \mathbb{R}^m\) and \(\mathbb{B}\) are the respective standard bases, then this matches the definition of the standard matrix.

MATH 235

Module 08 Lecture 5 Course Slides (Last Updated: March 26, 2014)

Matrix of a Linear mapping

Example

 $\mathsf{Let}\,\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \text{ be a basis for } \mathbb{V} \text{ and } \mathcal{C} = \{\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4\} \text{ be a basis for } \mathbb{W}. \text{ If } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathcal{L} : \mathbb{V} \to \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mapping such that } \mathbb{W} \text{ is a linear mappi$

$$\begin{split} L(\vec{v}_1) &= 2\vec{w}_1 + 3\vec{w}_2 - \vec{w}_4 \\ L(\vec{v}_2) &= \vec{w}_1 + 3\vec{w}_2 + 2\vec{w}_3 - \vec{w}_4 \end{split}$$

$$L(\vec{v}_3) = -\vec{w}_1 + 3\vec{w}_2 + 2\vec{w}_3$$
$$L(\vec{v}_3) = -\vec{w}_1 + 2\vec{w}_4$$

find the matrix $_{\mathcal{C}}[L]_{\mathcal{B}}$ of L and use it to find $L(\vec{x})$ where $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$

Solution

By definition, we have

$$_{\mathcal{C}}[L]_{\mathcal{B}} = \begin{bmatrix} [L(\vec{v}_1)]_{\mathcal{C}} & [L(\vec{v}_2)]_{\mathcal{C}} & [L(\vec{v}_3)]_{\mathcal{C}} \end{bmatrix}$$

We have

$$[L(\vec{v}_1)]_c = \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix} \qquad [L(\vec{v}_2)]_c = \begin{bmatrix} 1\\3\\2\\-1 \end{bmatrix} \qquad [L(\vec{v}_3)]_c = \begin{bmatrix} -1\\0\\0\\2 \end{bmatrix}$$

Hence,

$$c[L]_{\mathcal{B}} = \begin{bmatrix} [L(\vec{v}_1)]_{\mathcal{C}} & [L(\vec{v}_2)]_{\mathcal{C}} & [L(\vec{v}_3)]_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 3 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$

Matrix of a Linear mapping

Example

 $\text{Let } \mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \text{ be a basis for } \mathbb{V} \text{ and } \mathcal{C} = \{\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4\} \text{ be a basis for } \mathbb{W}. \text{ If } L: \mathbb{V} \rightarrow \mathbb{W} \text{ is a linear mapping such that } \mathbf{v} \in \mathbb{W} \text{ and } \mathcal{C} = \{\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4\} \text{ be a basis for } \mathbb{W}. \text{ If } L: \mathbb{V} \rightarrow \mathbb{W} \text{ is a linear mapping such that } \mathbf{v} \in \mathbb{W} \text{ and }$

$$L(\vec{v}_1) = 2\vec{w}_1 + 3\vec{w}_2 - \vec{w}_4$$

$$L(\vec{v}_2) = \vec{w}_1 + 3\vec{w}_2 + 2\vec{w}_3 - \vec{w}_4$$

$$L(\vec{v}_3) = -\vec{w}_1 + 2\vec{w}_4$$

find the matrix $_{\mathcal{C}}[L]_{\mathcal{B}}$ of L and use it to find $L(\vec{x})$ where $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$

Solution

By definition, we have

$$[L(\vec{x})]_c = {}_c[L]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 3 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ -6 \\ 0 \end{bmatrix}$$

This is the *C*-coodrinate vector of $L(\vec{x})$, so by definition of coordinates,

$$L(\vec{x}) = 6\vec{w}_1 + 6\vec{w}_2 - 6\vec{w}_3$$

Matrix of a Linear mapping

Example

Let $T: \mathbb{R}^2 \to M_{2 \times 2}(\mathbb{R})$ be the linear mapping defined by $T(a,b) = \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix}$. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$, and let $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$. Determine ${}_{\mathcal{C}}[T]_{\mathcal{B}}$ and use it to calculate $T(\vec{v})$ where $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Solution

To find $_{\mathcal{C}}[T]_{\mathcal{B}}$ we need to determine the \mathcal{C} -coordinates of the images of the vectors in \mathcal{B} under T.

We have $T(2,-1)=\begin{bmatrix}1&0\\0&3\end{bmatrix}$. We need to write this matrix as a linear combination of the vectors in \mathcal{C} .

That is, we need to find c_1, c_2, c_3, c_4 such that

$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = c_1 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + c_4 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

We row reduce the corresponding augmented matrix to get

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \Longrightarrow [T(2, -1)]_{\mathcal{C}} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 0 \end{bmatrix}$$

Matrix of a Linear mapping

Example

Let $T: \mathbb{R}^2 \to M_{2\times 2}(\mathbb{R})$ be the linear mapping defined by $T(a,b) = \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix}$. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$, and let $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$. Determine ${}_{\mathcal{C}}[T]_{\mathcal{B}}$ and use it to calculate $T(\vec{v})$ where $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Solution

Similarly, We find that

$$T(1,2) = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} = 4 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (-4) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 So, $[T(1,2)]_C = \begin{bmatrix} 4 \\ 3 \\ -4 \\ 0 \end{bmatrix}$.

Hence,

$$c[T]_{\mathcal{B}} = \begin{bmatrix} [T(2, -1)]_{\mathcal{C}} & [T(1, 2)]_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 1 & 3 \\ 2 & -4 \\ 0 & 0 \end{bmatrix}$$

Matrix of a Linear mapping

Example

Let $T:\mathbb{R}^2 o M_{2 imes 2}(\mathbb{R})$ be the linear mapping defined by $T(a,b) = \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix}$. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$, and let $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$. Determine ${}_{\mathcal{C}}[T]_{\mathcal{B}}$ and use it to calculate $T(\vec{v})$ where $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Solution

Thus, we get

$$[T(\vec{v})]_C = {}_C[T]_B[\vec{v}]_B = \begin{bmatrix} -2 & 4 \\ 1 & 3 \\ 2 & -4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -16 \\ -7 \\ 16 \\ 0 \end{bmatrix}$$
Therefore, $T(\vec{v}) = (-16) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} - 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 16 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 0 & 9 \end{bmatrix}$

Check:

We have
$$\vec{v} = 2\begin{bmatrix} 2 \\ -1 \end{bmatrix} - 3\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$$
. And $T(1, -8) = \begin{bmatrix} -7 & 0 \\ 0 & 9 \end{bmatrix}$ as before.

Matrix of a Linear mapping

Example

Let
$$T: \mathbb{R}^2 \to M_{2\times 2}(\mathbb{R})$$
 be the linear mapping defined by $T(a,b) = \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix}$. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$, and let $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$. Determine ${}_{\mathcal{C}}[T]_{\mathcal{B}}$ and use it to calculate $T(\vec{v})$ where $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Note:

- Although it is easier to solve for $T(\vec{v})$ using the latter method, the matrix $_{\mathcal{C}}[T]_{\mathcal{B}}$ helps us to better understand the linear mapping T and see its properties.
- For any linear mapping $L: \mathbb{V} \to \mathbb{W}$ we generally have $\operatorname{Range}(L) \neq \operatorname{Col}(_{\mathcal{C}}[L]_{\mathcal{B}})$. In particular, the columnspace of a matrix is a subspace of \mathbb{R}^n , while $\operatorname{Range}(L)$ can be a subspace of some other vector space (ie. $M_{2\times 2}(\mathbb{R})$).