Projections

In This Lecture

We return to our purpose for looking at orthogonal complements: to define the projection of a vector v

onto a
finite dimensional subspace W of an inner product space V.

Projections

Recall that we want to find $\mathrm{proj}_{\mathbb{W}}(\vec{\nu})$ and $\mathrm{perp}_{\mathbb{W}}(\vec{\nu})$ such that

$$\vec{v} = \text{proj}_{W}(\vec{v}) + \text{perp}_{W}(\vec{v})$$

with $\operatorname{proj}_{\mathbb{W}}(\vec{v}) \in \mathbb{W}$ and $\operatorname{perp}_{\mathbb{W}}(\vec{v}) \in \mathbb{W}^{\perp}$.

Suppose that $\dim \mathbb{V} = n$, $\{\vec{v}_1, \dots, \vec{v}_k\}$ is an orthogonal basis for \mathbb{W} , and $\{\vec{v}_{k+1}, \dots, \vec{v}_n\}$ is an orthogonal basis for \mathbb{W}^{\perp} . Then $\{\vec{v}_1, \dots, \vec{v}_k, \vec{v}_{k+1}, \dots, \vec{v}_n\}$ is an orthogonal basis for \mathbb{V} . Hence, for any $\vec{v} \in \mathbb{V}$ we get

$$\vec{v} = \frac{\langle \vec{v}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{v}, \vec{v}_k \rangle}{\|\vec{v}_k\|^2} \vec{v}_k + \frac{\langle \vec{v}, \vec{v}_{k+1} \rangle}{\|\vec{v}_{k+1}\|^2} \vec{v}_{k+1} + \dots + \frac{\langle \vec{v}, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n$$

Definition: Suppose \mathbb{W} is a k-dimensional subspace of an inner product space \mathbb{V} and $\{\vec{v}_1, \dots, \vec{v}_k\}$ is an orthogonal basis for \mathbb{W} . For any $\vec{v} \in \mathbb{V}$ we define the projection of \vec{v} onto \mathbb{W} by

$$\operatorname{proj}_{\mathbb{W}}(\vec{v}) = \frac{\langle \vec{v}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{v}, \vec{v}_k \rangle}{\|\vec{v}_k\|^2} \vec{v}_k$$

and the perpendicular of \vec{v} onto \mathbb{W} by

$$\operatorname{perp}_{\mathbb{W}}(\vec{v}) = \vec{v} - \operatorname{proj}_{\mathbb{W}}(\vec{v})$$

Projections

Theorem 9.4.3

Suppose \mathbb{W} is a k-dimensional subspace of an inner product space \mathbb{V} . For any $\vec{v} \in \mathbb{V}$, we have

$$\operatorname{perp}_{\mathbb{W}}(\vec{v}) = \vec{v} - \operatorname{proj}_{\mathbb{W}}(\vec{v}) \in \mathbb{W}^{\perp}$$

Proof

$$\mathrm{perp}_{\mathbb{W}}(\vec{v}) = \vec{v} - \mathrm{proj}_{\mathbb{W}}(\vec{v}) = \vec{v} - \frac{\left\langle \vec{v}, \vec{v}_1 \right\rangle}{\left\| \vec{v}_1 \right\|^2} \, \vec{v}_1 - \dots - \frac{\left\langle \vec{v}, \vec{v}_k \right\rangle}{\left\| \vec{v}_k \right\|^2} \, \vec{v}_k$$

By the Gram-Schmidt Orthogonalization Theorem, $\{\vec{v}_1,\ldots,\vec{v}_k, \text{perp}_{\mathbb{W}}(\vec{v})\}$ is an orthogonal set. Therefore, $\text{perp}_{\mathbb{W}}(\vec{v}) \in \mathbb{W}^{\perp}$ by Theorem 9.4.1.

Note: The formula for the projection requires us to have an orthogonal or orthonormal basis. For this reason these are sometimes called **orthogonal projections**. Be careful when doing problems with projections that you have at least an orthogonal basis for the subspace you are projecting onto.

Projections

Theorem 9.4.4

If $\mathbb W$ is a k-dimensional subspace of an inner product space $\mathbb V$, then $\operatorname{proj}_{\mathbb W}$ is a linear operator on $\mathbb V$ with kernel $\mathbb W^\perp$.

Theorem 9.4.5

If $\mathbb W$ is a subspace of a finite dimensional inner product space $\mathbb V$, then for any $\vec v\in\mathbb V$ we have

$$\operatorname{proj}_{\mathbb{W}^{\perp}}(\vec{v}) = \operatorname{perp}_{\mathbb{W}}(\vec{v})$$

Projections

Example

Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}$$
 be an orthogonal basis for a subspace \mathbb{W} of \mathbb{R}^3 and let $\vec{x} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$.

Determine $\operatorname{proj}_{\mathbb{W}}(\vec{x})$ and $\operatorname{perp}_{\mathbb{W}}(\vec{x})$

Solution

$$\text{Let } \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ and } \vec{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \text{. Then,}$$

$$\text{proj}_{\mathbb{W}}(\vec{x}) = \frac{\langle \vec{x}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \frac{\langle \vec{x}, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 = \frac{7}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \frac{-4}{3} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5/2 \\ 1 \\ 5/2 \end{bmatrix}$$

$$\text{perp}_{\mathbb{W}}(\vec{x}) = \vec{x} - \text{proj}_{\mathbb{W}}(\vec{x}) = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 5/2 \\ 1 \\ 5/2 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$$

Projections

Notice that if we have an orthonormal basis $\{\vec{v}_1,\ldots,\vec{v}_k\}$ for \mathbb{W} , then the formula for the projection simplifies to $\operatorname{proj}_{h\mathbb{W}}(\vec{x}) = \langle \vec{x},\vec{v}_1 \rangle \vec{v}_1 + \cdots + \langle \vec{x},\vec{v}_k \rangle \vec{v}_k$

Example

$$\text{Let } \mathbb{S} = \operatorname{Span} \left\{ \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{bmatrix} \right\} \text{ be a subspace of } M_{2 \times 2}(\mathbb{R}) \text{ and let } A = \begin{bmatrix} 2 & 5 \\ -7 & 3 \end{bmatrix}. \text{ Determine } \operatorname{proj}_{\mathbb{S}}(A) \text{ and } \operatorname{perp}_{\mathbb{S}}(A).$$

Solution

We can easily verify that an orthonormal basis for \mathbb{S} is $\mathcal{B} = \{B_1, B_2\} = \left\{ \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{bmatrix} \right\}$. Thus, we get

$$\begin{split} & \text{proj}_{\mathbb{S}}(A) = \langle A, B_1 \rangle B_1 + \langle A, B_2 \rangle B_2 = \frac{3}{2} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} + \frac{-13}{2} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{bmatrix} = \begin{bmatrix} -5/2 & 4 \\ -5/2 & 4 \end{bmatrix} \\ & \text{perp}_{\mathbb{S}}(A) = A - \text{proj}_{\mathbb{S}}(A) = \begin{bmatrix} 2 & 5 \\ -7 & 3 \end{bmatrix} - \begin{bmatrix} -5/2 & 4 \\ -5/2 & 4 \end{bmatrix} = \begin{bmatrix} 9/2 & 1 \\ -9/2 & -1 \end{bmatrix} \end{split}$$

Projections

Example

Let $\mathbb{W}=\operatorname{Span}\{1,x\}$ be a subspace of $P_2(\mathbb{R})$ under the inner product $\langle p,q\rangle=p(0)q(0)+p(1)q(1)+p(2)q(2)$. Determine $\operatorname{proj}_{\mathbb{W}}(x^2)$.

Solution

We first need to apply the Gram-Schmidt procedure to $\{1, x\}$ to find an orthogonal basis for \mathbb{W} . Let $p_1(x) = 1$ and then

$$p_2(x) = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \, 1 = x - \frac{0(1) + 1(1) + 2(1)}{1^2 + 1^2 + 1^2} \, 1 = x - 1$$

Therefore, our orthogonal basis for
$$\mathbb{W}$$
 is $\{1, x-1\}$.
$$\operatorname{proj}_{\mathbb{W}}(x^2) = \frac{\langle x^2, 1 \rangle}{\|1\|^2} \ 1 + \frac{\langle x^2, x-1 \rangle}{\|x-1\|^2} \ (x-1)$$

$$= \frac{0(1)+1(1)+4(1)}{1^1+1^1+1^2} \ 1 + \frac{0(-1)+1(0)+4(1)}{(-1)^2+0^2+1^2} \ (x-1)$$

$$= \frac{5}{3} \ 1 + 2(x-1)$$

$$= 2x - \frac{1}{3}$$