MATH 235 Module 10 Lecture 24 Course Slides (Last Updated: March 26, 2014)

Singular Values

We have now seen that symmetric matrices can be orthogonally diagonalized.

If we don't have a symmetric matrix, we still may be able to diagonalize it.

We have also seen that if a matrix has all real eigenvalues, then we can triangularize it.

To do all that was mentioned we must have a square matrix, so what do we do if we get an $m \times n$ matrix with $m \neq n$?

We will figure out the answer to this question in the next couple of lectures.

Singular Values

Example

Let $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 1 & -2 \end{bmatrix}$ and let L be the linear mapping $L(\vec{x}) = A\vec{x}$. What is the maximum and minimum of $\|L(\vec{x})\|$ subject to the constraint $\|\vec{x}\| = 1$?

Solution

We get

$$\|L(\vec{x})\|^2 = \|A\vec{x}\|^2 = (A\vec{x}) \cdot (A\vec{x}) = (A\vec{x})^T (A\vec{x}) = \vec{x}^T (A^T A) \vec{x}$$

We can solve this easily by using Theorem 10.5.1.

Thus, the maximum occurs at the largest eigenvalue of A^TA and the minimum at the smallest eigenvalue of A^TA . We have

$$A^T A = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$$

which has eigenvalues $\lambda_1=10,\,\lambda_2=5.$

Thus, the largest eigenvalue of A^TA is 10, so the maximum of $||L(\vec{x})||^2$ is 10.

To find the maximum of $||L(\vec{x})||$ we need to take the square root of $||L(\vec{x})||^2$.

MATH 235 Module 10 Lecture 24 Course Slides (Last Updated: March 26, 2014)

Singular Values

Example

Let $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 1 & -2 \end{bmatrix}$ and let L be the linear mapping $L(\vec{x}) = A\vec{x}$. What is the maximum and minimum of $||L(\vec{x})||$ subject to the constraint $||\vec{x}|| = 1$?

Solution

So, we get the maximum of $||L(\vec{x})||$ subject to $||\vec{x}|| = 1$ is $\sqrt{10}$.

Similarly, the minimum of $||L(\vec{x})||$ subject to $||\vec{x}|| = 1$ is $\sqrt{5}$.

We find that a unit eigenvector for $\lambda_1=10$ is $\vec{v}_1=\begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix}$, and $\vec{v}_2=\begin{bmatrix} 2/\sqrt{5}\\ 1/\sqrt{5} \end{bmatrix}$ is a unit eigenvector for $\lambda_2=5$.

We easily verify that

$$||L(\vec{v}_1)|| = \left\| \begin{bmatrix} 3/\sqrt{5} \\ 4/\sqrt{5} \\ -\sqrt{5} \end{bmatrix} \right\| = \sqrt{10} \quad ||L(\vec{v}_2)|| = \left\| \begin{bmatrix} 4/\sqrt{5} \\ -3/\sqrt{5} \\ 0 \end{bmatrix} \right\| = \sqrt{5}$$

Singular Values

Theorem 10.6.1

If A is an $m \times n$ matrix and $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $A^T A$ with corresponding unit eigenvectors $\vec{v}_1, \dots, \vec{v}_n$, then $\lambda_1, \dots, \lambda_n$ are all non-negative and

$$||A\vec{v}_i|| = \sqrt{\lambda_i}$$

Proof

For $1 \leq i \leq n$ we are assuming that \vec{v}_i is an eigenvector of A^TA , so this means that $A^TA\vec{v}_i = \lambda_i \vec{v}_i$. Thus, we get

$$||A\vec{v}_{i}||^{2} = (A\vec{v}_{i}) \cdot (A\vec{v}_{i}) = (A\vec{v}_{i})^{T}A\vec{v}_{i} = v_{i}^{T}A^{T}A\vec{v}_{i} = \vec{v}_{i}^{T}(\lambda_{i}\vec{v}_{i}) = \lambda_{i}(\vec{v}_{i} \cdot \vec{v}_{i}) = \lambda_{i}$$

Therefore, λ_i is equal to the non-negative number $||A\vec{v}_i||^2$, and the result follows.

Note: From the example before the Theorem, the square root of the eigenvalues of A^TA are the maximum and minimum of values of $\|\vec{Ax}\|$ subject to $\|\vec{x}\| = 1$. So, these are behaving like the eigenvalues of a symmetric matrix.

MATH 235 Module 10 Lecture 24 Course Slides

(Last Updated: March 26, 2014)

Singular Values

Definition: The singular values $\sigma_1, \ldots, \sigma_n$ of an $m \times n$ matrix A are the square roots of the eigenvalues of A^TA arranged so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

Note: By definition, we must arrange the singular values from greatest to least.

The reasoning for this is similar to what we saw in Theorem 10.5.1: we want to know where the largest and smallest ones are. In particular, we need to ensure all of the 0 singular values are at the end.

Example

Find the singular values of $A = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.

Solution

We have
$$A^T A = \begin{bmatrix} 2 & -1 & -2 \\ -1 & 5 & 1 \\ -2 & 1 & 2 \end{bmatrix}$$
.

We find that the eigenvalues of $A^{T}A$ are 0, 6, and 3.

Thus, the singular values of A are $\sigma_1 = \sqrt{6}$, $\sigma_2 = \sqrt{3}$, and $\sigma_3 = 0$.

Singular Values

We know that the number of non-zero eigenvalues of a square matrix A equals the rank of A.

In the example and the check-in, we got that the number of non-zero singular values of A equaled the rank of A. To prove that this is always the case, we just need to prove that the rank of A^TA equals the rank of A.

Lemma 10.6.2

If A is an $m \times n$ matrix, then $\text{Null}(A^T A) = \text{Null}(A)$.

Proof

Assume $\vec{x} \in \text{Null}(A)$, then $A\vec{x} = \vec{0}$ and $A^T A \vec{x} = A^T \vec{0} = \vec{0}$, hence $\vec{x} \in \text{Null}(A^T A)$. So, $\text{Null}(A) \subseteq \text{Null}(A^T A)$.

Assume $\vec{x} \in \text{Null}(A^T A)$.

If $A^T A \vec{x} = \vec{0}$, then

$$||A\vec{x}||^2 = (A\vec{x}) \cdot (A\vec{x}) = (A\vec{x})^T (A\vec{x}) = \vec{x}^T A^T A \vec{x} = \vec{x}^T \vec{0} = 0$$

Hence, $A\vec{x} = \vec{0}$ and so $\vec{x} \in \text{Null}(A)$.

Thus, $Null(A^TA) \subseteq Null(A)$, and consequently $Null(A) = Null(A^TA)$.

MATH 235 Module 10 Lecture 24 Course Slides (Last Updated: March 26, 2014)

Singular Values Theorem 10.6.3 If A is an $m \times n$ matrix, then $\operatorname{rank}(A^TA) = \operatorname{rank}(A)$. Proof Using Lemma 10.6.2 and the Dimension Theorem, we get $\operatorname{rank}(A^TA) = n - \dim(\operatorname{Null}(A^TA)) = n - \dim(\operatorname{Null}(A)) = \operatorname{rank}(A)$ Corollary 10.6.4 If A is an $m \times n$ matrix and $\operatorname{rank}(A) = r$, then A has r non-zero singular values. We see that the singular values of a matrix A have a lot of the same properties that eigenvalues have. This should not be surprising, since we have defined singular values in terms of eigenvalues: they are the square roots of the eigenvalues of A^TA .