The Gram-Schmidt Procedure

Last Lecture

· We saw that orthonormal bases are very useful.

In This Lecture

ullet We will learn how to use the Gram-Schmidt procedure to turn a basis $\{ ec{w}_1, \ldots, ec{w}_k \}$ for a subspace $\mathbb W$ of an inner product space $\mathbb V$ into an orthogonal basis $\{\vec v_1,\ldots,\vec v_k\}$ for $\mathbb W$.

The Gram-Schmidt Procedure

First consider the case where $\mathbb W$ is a 1-dimensional subspace of an inner product space $\mathbb V$. Then, we have a basis $\{\vec{w}_1\}$ for \mathbb{W} . Since $\{\vec{w}_1\}$ is an orthogonal basis for \mathbb{W} , we can take $\vec{v}_1 = \vec{w}_1$.

Next, consider the case where \mathbb{W} is a 2-dimensional subspace of \mathbb{V} with basis $\{\vec{w}_1, \vec{w}_2\}$. Starting as in the case above we take $\vec{v}_1 = \vec{w}_1$. We now need to prove that there must exist a vector \vec{v}_2 in $\mathbb W$ that is orthogonal to \vec{v}_1 .

Assume there is a vector \vec{v}_2 in \mathbb{W} such that $\{\vec{v}_1, \vec{v}_2\}$ is an orthogonal basis for \mathbb{W} . Since \vec{w}_2 is in \mathbb{W} , we can write it as a linear combination of the orthogonal basis vectors. Using our work from last lecture we get

$$\vec{w}_2 = \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\left| |\vec{v}_1| \right|^2} \, \vec{v}_1 + \frac{\langle \vec{w}_2, \vec{v}_2 \rangle}{\left| |\vec{v}_2| \right|^2} \, \vec{v}_2$$

Since \vec{w}_2 is not a scalar multiple of $\vec{w}_1 = \vec{v}_1$ we must have have $\langle \vec{w}_2, \vec{v}_2 \rangle \neq 0$

Solving for \vec{v}_2 we get

$$\vec{v}_2 = \frac{||\vec{v}_2||^2}{\langle \vec{w}_2, \vec{v}_2 \rangle} \left[\vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 \right]$$

We then take $\vec{v}_2 = \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1$.

The Gram-Schmidt Procedure

We need to prove that a vector \vec{v}_2 defined this way does have the desired property.

Defining
$$\vec{v}_2=\vec{w}_2-\frac{\langle\vec{w}_2,\vec{v}_1\rangle}{\left\|\vec{v}_1\right\|^2}\,\vec{v}_1$$
 gives

$$\langle \vec{v}_1, \vec{v}_2 \rangle = \left\langle \vec{v}_1, \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 \right\rangle = \langle \vec{v}_1, \vec{w}_2 \rangle - \langle \vec{w}_2, \vec{v}_1 \rangle = 0$$

Consequently, $\{\vec{v}_1,\vec{v}_2\}$ is an orthogonal set of 2 non-zero vectors in \mathbb{W} and hence is an orthogonal basis for \mathbb{W} .

We can continue to repeat this procedure for 3, 4, etc. dimensional subspaces $\mathbb W$ of $\mathbb V$

Doing so produces the following result.

The Gram-Schmidt Procedure

Theorem 9.3.1 - Gram-Schmidt Orthogonalization Theorem

Let $\{\vec{w}_1,\ldots,\vec{w}_n\}$ be a basis for an inner product space \mathbb{W} . If we define $\vec{v}_1,\ldots,\vec{v}_n$ successively as follows:

$$\begin{split} \vec{v}_1 &= \vec{w}_1 \\ \vec{v}_2 &= \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 \\ \vec{v}_i &= \vec{w}_i - \frac{\langle \vec{w}_i, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{w}_i, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 - \dots - \frac{\langle \vec{w}_i, \vec{v}_{i-1} \rangle}{\|\vec{v}_{i-1}\|^2} \vec{v}_{i-1} \end{split} \quad \text{for } 3 \leq i \leq n \end{split}$$

then $\{\vec{v}_1,\ldots,\vec{v}_i\}$ is an orthogonal basis for $\mathrm{Span}\{\vec{w}_1,\ldots,\vec{w}_i\}$ for $1\leq i\leq n$.

The algorithm defined in this theorem is called the Gram-Schmidt procedure.

This theorem shows that every finite dimensional inner product space has an orthonormal basis. We will use this fact constantly throughout the rest of the course.

The Gram-Schmidt Procedure

Example

Use the Gram-Schmidt procedure to find an orthonormal basis for the subspace of \mathbb{R}^4 defined by

$$\mathbb{S} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Solution

Label the vectors in the spanning set for $\mathbb S$ as $\vec w_1, \vec w_2, \vec w_3$ respectively.

First Step: We first take $\vec{v}_1 = \vec{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Then, $\{\vec{v}_1\}$ is an orthogonal basis for $\mathrm{Span}\{\vec{w}_1\}$.

Second Step: $\vec{v}_2 = \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 = \begin{bmatrix} -1/2 \\ 1 \\ 1 \\ 1/2 \end{bmatrix}$

For simplicity in the next calculations, we multiply this vector by 2 to get $\vec{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$. Then, $\{\vec{v}_1, \vec{v}_2\}$ is an orthogonal

basis for Span{ \vec{w}_1 , \vec{w}_2 }.

The Gram-Schmidt Procedure

Example

Use the Gram-Schmidt procedure to find an orthonormal basis for the subspace of \mathbb{R}^4 defined by

$$\mathbb{S} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Solution

Third Step:
$$\vec{v}_3 = \vec{w}_3 - \frac{\langle \vec{w}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{w}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 = \begin{bmatrix} 2/5 \\ 1/5 \\ 1/5 \\ -2/5 \end{bmatrix}$$
 So, we take $\vec{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ -2 \end{bmatrix}$.

We now have that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an orthogonal basis for \mathbb{S} . To obtain an orthonormal basis for \mathbb{S} , we simply divide each vector in this basis by its length. Thus, we find that an orthonormal basis for \mathbb{S} is

$$\left\{ \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{10} \\ 2/\sqrt{10} \\ 2/\sqrt{10} \\ 1/\sqrt{10} \end{bmatrix}, \begin{bmatrix} 2/\sqrt{10} \\ 1/\sqrt{10} \\ 1/\sqrt{10} \\ -2/\sqrt{10} \end{bmatrix} \right\}$$

The Gram-Schmidt Procedure

Example

Use the Gram-Schmidt procedure to find an orthogonal basis for the subspace $\mathbb W$ of $M_{2 imes 2}(\mathbb R)$ spanned by

$$\{A_1, A_2, A_3, A_4\} = \left\{ \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -2 & -3 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -3 & -1 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 7 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

Solution

Take $B_1 = A_1$. Then

$$A_2 - \frac{\langle A_2, B_1 \rangle}{\|B_1\|^2} B_1 = \begin{bmatrix} -2 & -3 \\ 1 & -1 \end{bmatrix} - \frac{-10}{7} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -4/7 & -1/7 \\ -3/7 & 3/7 \end{bmatrix}$$

So, we take $B_2 = \begin{bmatrix} 4 & 1 \\ 3 & -3 \end{bmatrix}$. Next, we find that

$$A_{3} - \frac{\langle A_{3}, B_{1} \rangle}{\|B_{1}\|^{2}} B_{1} - \frac{\langle A_{3}, B_{2} \rangle}{\|B_{2}\|^{2}} B_{2} = \begin{bmatrix} -3 & -1 \\ -2 & 2 \end{bmatrix} - \frac{-1}{7} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} - \frac{-25}{35} \begin{bmatrix} 4 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

What happened? A_3 is a linear combination of B_1 and B_2 . In particular,

$$A_3 = \frac{-1}{7} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} + \frac{-25}{35} \begin{bmatrix} 4 & 1 \\ 3 & -3 \end{bmatrix}$$

So, A_3 can be ignored and we can move to the next vector in the set.

The Gram-Schmidt Procedure

Example

Use the Gram-Schmidt procedure to find an orthogonal basis for the subspace $\mathbb W$ of $M_{2 imes 2}(\mathbb R)$ spanned by

$${A_1, A_2, A_3, A_4} = \left\{ \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -2 & -3 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -3 & -1 \\ -2 & 2 \end{bmatrix}, \begin{bmatrix} 7 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

Solution

We then have

$$\begin{split} B_3 &= A_4 - \frac{\langle A_4, B_1 \rangle}{\|B_1\|^2} \, B_1 - \frac{\langle A_4, B_2 \rangle}{\|B_2\|^2} \, B_2 \\ &= \begin{bmatrix} 7 & 0 \\ 0 & 0 \end{bmatrix} - \frac{7}{7} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} - \frac{28}{35} \begin{bmatrix} 4 & 1 \\ 3 & -3 \end{bmatrix} \\ &= \begin{bmatrix} 14/5 & -14/5 \\ -7/5 & 7/5 \end{bmatrix} \end{split}$$

Thus, $\{B_1, B_2, B_3\}$ is an orthogonal basis for \mathbb{W} .