Previously
 We have been working towards trying to find for which linear mappings there exists a basis B such that the matrix of the linear mapping with respect to the basis B is diagonal.
Diagonalization Theory
Definition: An $n \times n$ matrix A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1}AP = D$ is diagonal. We say that P diagonalizes A .

Diagonalization Theory

Recall that we previously showed that if $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for \mathbb{R}^n of eigenvectors of a matrix A, and $\lambda_1, \dots, \lambda_n$ are eigenvalues of A corresponding to $\vec{v}_1, \dots, \vec{v}_n$ respectively, then taking $P = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}$ gives

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Diagonalization Theory

Lemma 6.3.1

Suppose that A is $n \times n$ and that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues with corresponding eigenvectors $\vec{v}_1, \ldots, \vec{v}_k$, then $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly independent.

Proof

If k=1, then we have that $\{\vec{v}_1\}$ is linearly independent since $\vec{v}_1 \neq \vec{0}$ by definition of an eigenvector.

Assume that the result is true for some $k \geq 1$.

To show $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{v}_{k+1}\}$ is linearly independent we consider

$$c_1 \vec{v}_1 + \dots + c_k \vec{v}_k + c_{k+1} \vec{v}_{k+1} = \vec{0} \tag{1}$$

Since $A\vec{v}_i = \lambda_i \vec{v}_i$ we get $(A - \lambda_i I)\vec{v}_i = \vec{0}$ and

$$(A-\lambda_i I) \vec{v}_j = A \vec{v}_j - \lambda_i \vec{v}_j = \lambda_j \vec{v}_j - \lambda_i \vec{v}_j = (\lambda_j - \lambda_i) \vec{v}_j$$

Multiplying both sides of (1) by $A - \lambda_{k+1}I$ gives

$$c_1(\lambda_1-\lambda_{k+1})\vec{v}_1+\cdots+c_k(\lambda_k-\lambda_{k+1})\vec{v}_k+\vec{0}=\vec{0}$$

By our induction hypothesis, $\{\vec{v}_1,\dots,\vec{v}_k\}$ is linearly independent and so $c_i(\lambda_i-\lambda_{k+1})=0$ for $1\leq i\leq k$.

But, $\lambda_i \neq \lambda_{k+1}$ for $1 \leq i \leq k$, so we must have $c_1 = \cdots = c_k = 0$.

Thus, (1) becomes

$$0 + c_{k+1} \vec{v}_{k+1} = \vec{0}$$

Since $\vec{v}_{k+1} \neq \vec{0}$ we get $c_{k+1} = 0$.

Consequently, $\{\vec{v}_1,\ldots,\vec{v}_{k+1}\}$ is linearly independent as required. \square

Diagonalization Theory

Lemma 6.3.2

If A is matrix with distinct eigenvalues $\{\lambda_1,\ldots,\lambda_k\}$ and $\mathcal{B}_i=\{\vec{v}_{i,1},\ldots,\vec{v}_{i,g_{i_i}}\}$ is a basis for the eigenspace of λ_i for $1\leq i\leq k$, then

$$\mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$$

is a linearly independent set.

Theorem 6.3.3 - The Diagonalization Theorem

Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of a matrix A. Then, A is diagonalizable if and only if $g_{\lambda_i} = a_{\lambda_i}$ for $1 \le i \le k$.

Corollary 6.3.4

If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Diagonalization Theory

Notes

1. If A is diagonalizable, then there exists an invertible matrix P and diagonal matrix D such that

$$P^{-1}AP = D$$

Notice that we can multiply by P on the left and by P^{-1} on the right to get a matrix factorization of A:

$$A = PDP^{-1}$$

2. Since we are currently only concerned with real numbers, we should modify the Diagonalization Theorem to say that a real matrix A is diagonalizable over the real numbers if and only if all the eigenvalues of A are real and $g_{\lambda_i} = a_{\lambda_i}$ for $1 \le i \le k$. If A has at least one non-real eigenvalue and hence a non-real eigenvector, then we say that A is not diagonalizable over \mathbb{R} .

Diagonalization Theory

Algorithm

Let $L:\mathbb{R}^n o \mathbb{R}^n$ be a linear mapping with standard matrix A=[L].

To diagonalize the $n \times n$ matrix A, or show that A is not diagonalizable:

- 1. Find and factor the characteristic polynomial $C(\lambda) = \det(A \lambda I)$.
- 2. Let $\lambda_1, \ldots, \lambda_n$ denote the *n*-roots of $C(\lambda)$ (repeated according to multiplicity). If any of the eigenvalues λ_i are not real, then A is not diagonalizable over \mathbb{R} .
- 3. Find a basis for the eigenspace of each λ_i by finding a basis for the nullspace of $A \lambda_i I$.
- 4. If $g_{\lambda_i} < a_{\lambda_i}$ for any λ_i , then A is not diagonalizable. Otherwise, form a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ for \mathbb{R}^n of eigenvectors of A by combining the eigenvectors in the bases for each eigenspace of A. Let $P = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}$. Then,

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where λ_i is an eigenvalue corresponding to the eigenvector \vec{v}_i for $1 \leq i \leq n$. That is, if we take $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$, then $[L]_{\mathcal{B}} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$.