Powers of Matrices

In This Lecture

• We will look at a simple application of diagonalization.

Powers of Matrices

Let A be an $n \times n$ matrix.

We define

$$A^2 = A(A)$$

$$A^3 = A \times A \times A = A^2(A)$$

$$A^{k+1} = A^k A$$
 for any positive integer k

$$\operatorname{Consider} A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}.$$

How can we calculate large powers of A by hand?

If
$$D = \operatorname{diag}(2,3) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, then

$$D^{2} = DD = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$

$$D^{3} = D^{2}D = \begin{bmatrix} 8 & 0 \\ 0 & 27 \end{bmatrix}$$

$$D^{4} = D^{3}D = \begin{bmatrix} 16 & 0 \\ 0 & 81 \end{bmatrix}$$

D	owers	οf	Matr	1000
\boldsymbol{P}	owers	OT	IVIATE	ഥല

Lemma 6.4.1

If $D = \operatorname{diag}(d_1, \dots, d_n)$, then $D^m = \operatorname{diag}(d_1^m, \dots, d_n^m)$ for any positive integer m.

Proof

If m=1, the result is clearly true. Assume the result is true for m=k.

Then

$$D^{k+1} = D^k D = \operatorname{diag}(d_1^k, \dots, d_n^k) \operatorname{diag}(d_1, \dots, d_n) = \operatorname{diag}(d_1^{k+1}, \dots, d_n^{k+1})$$

as required.

Powers of Matrices

Theorem 6.4.2

If there exists an invertible matrix P such that $P^{-1}AP = D$ is diagonal, then

$$A^m = PD^m P^{-1}$$

for any positive integer m.

Proof

We first observe that if $P^{-1}AP = D$, then we can multiply on the left by P and on the right by P^{-1} to get $A = PDP^{-1}$.

If m = 1, then we have $A^1 = PD^1P^{-1}$ as required.

Assume the result is true for some m = k. That is, assume that $A^k = PD^kP^{-1}$.

Then,

$$\begin{split} A^{k+1} &= A^k A \\ &= (PD^k P^{-1})(PDP^{-1}) \\ &= PD^k (P^{-1}P)DP^{-1} \\ &= PD^k IDP^{-1} \\ &= PD^{k+1}P^{-1} \end{split}$$

by Lemma 6.4.1.

Powers of Matrices

Example 1

Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$
. Find A^{1000} .

Solution

We first diagonalize A. We have

$$C(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ -1 & 4 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$$

Thus, the eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = 3$.

For $\lambda_1 = 2$ we get

$$A - \lambda_1 I = \begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

Hence, a basis for E_{λ_1} is $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$.

For $\lambda_2 = 3$ we get

$$A - \lambda_2 I = \begin{bmatrix} -2 & 2 \\ -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Hence, a basis for E_{λ_2} is $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

Powers of Matrices

Example 1

Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$
. Find A^{1000} .

Solution

Therefore, taking
$$P = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 gives

$$P^{-1}AP = D$$

where
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
.

Thus, by Theorem 6.4.2 we get that

$$\begin{split} A^{1000} &= PD^{1000}P^{-1} \\ &= \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{1000} & 0 \\ 0 & 3^{1000} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \\ &= \begin{bmatrix} 2^{1001} & 3^{1000} \\ 2^{1000} & 3^{1000} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \\ &= \begin{bmatrix} 2^{1001} - 3^{1000} & -2^{1001} + 2 \cdot 3^{1000} \\ 2^{1000} - 3^{1000} & -2^{1000} + 2 \cdot 3^{1000} \end{bmatrix} \end{split}$$

Powers of Matrices

Example 2

Let
$$B = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
. Calculate B^{100} .

Solution

We first diagonalize B. We have

$$C(\lambda) = \det(B - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & 2 \\ 2 & 2 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2 - \lambda & 0 & 2 \\ 2 & -\lambda & 2 \\ 2 & \lambda & 2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2 - \lambda & 0 & 2 \\ 2 & \lambda & 2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 2 - \lambda & 0 & 2 \\ 2 & -\lambda & 2 \\ 4 & 0 & 4 - \lambda \end{vmatrix}$$

$$= -\lambda(\lambda^2 - 6\lambda)$$

$$= -\lambda^2(\lambda - 6)$$

Thus, the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 6$.

Powers of Matrices

Example 2

Let
$$B = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
. Calculate B^{100} .

Solution

For $\lambda_1 = 0$ we get

$$B - \lambda_1 I = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, a basis for
$$E_{\lambda_1}$$
 is $\left\{ \begin{bmatrix} -1\\1\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$

For $\lambda_2 = 6$ we get

$$B - \lambda_2 I = \begin{bmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, a basis for E_{λ_2} is $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$

Powers of Matrices

Example 2

Let
$$B = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
. Calculate B^{100} .

Solution

Therefore, we have
$$P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.

So, by Theorem 6.4.2 we get that

We get that
$$B^{100} = PD^{100}P^{-1} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6^{100}/3 & 6^{100}/3 & 6^{100}/3 \end{bmatrix}$$

$$= 2 \cdot 6^{99} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$