Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

Systems of Linear Equations

Definition: An equation in *n* variables x_1, \ldots, x_n that can be written in the form

$$a_1x_1+\cdots+a_nx_n=b$$

where a_1, \ldots, a_n, b are constants is called a linear equation. The constants a_i are called the coefficients of the equation and b is called the right-hand side.

The form $a_1x_1 + \cdots + a_nx_n = b$ is called the standard form of the linear equation.

Systems of Linear Equations

Definition: A set of m linear equations in the same variables x_1, \ldots, x_n is called a system of m linear equations in n variables.

A general system of m linear equations in n variables has the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Observe that the coefficient a_{ij} represents the coefficient of x_j in the *i*-th equation.

Definition: A solution to a system of linear equations m in n variables is a vector $\begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$ in \mathbb{R}^n such that all m

equations are satisfied when we set $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$. The set of all solutions of a system of linear equations is called the solution set of the system.

Definition: If a system of linear equations has at least one solution, then it is said to be consistent. Otherwise, it is said to be inconsistent.

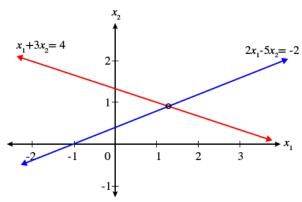
Geometric Interpretation

Example 1

The system of 2 linear equations in 2 variables

$$\begin{aligned}
 x_1 + 3x_2 &= 4 \\
 2x_1 - 5x_2 &= -2
 \end{aligned}$$

graphically represents two lines in \mathbb{R}^2 .



We see that both lines intersect only at the point (14/11, 10/11).

Hence, the system is consistent with unique solution $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 14/11 \\ 10/11 \end{bmatrix}$.

Geometric Interpretation

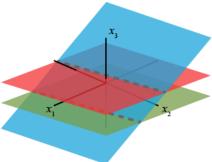
Example 2

The system of 3 linear equations in 3 variables

$$x_1 + 2x_2 - 3x_3 = 4$$

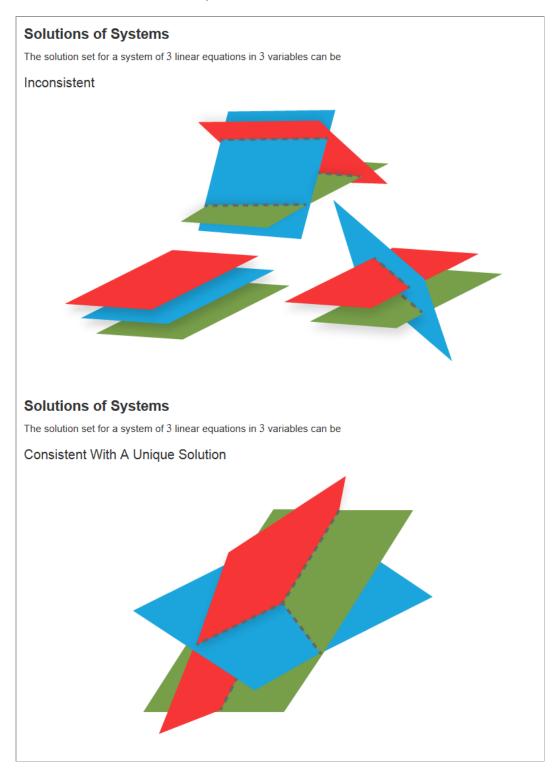
 $8x_1 - x_2 + 2x_3 = 0$
 $-x_1 - 2x_2 + 3x_3 = 1$

graphically represents three planes in \mathbb{R}^3 .



We see that there is no point that lies on all three planes so the system is inconsistent.

MATH 136 Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

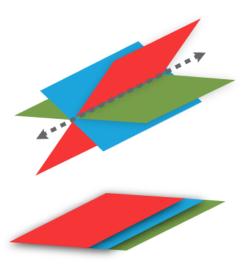


MATH 136 Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

Solutions of Systems

The solution set for a system of 3 linear equations in 3 variables can be

Consistent With Infinitely Many Solutions



Solutions of Systems

Theorem 2.1.1

If the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots $=$ \vdots

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

has two distinct solutions $\vec{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$ and $\vec{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$, then $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$ is a distinct solution for each $c \in \mathbb{R}$.

Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

Solutions of Systems

If the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
has two distinct solutions $\vec{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$ and

 $\vec{t} = \begin{bmatrix} \vdots \\ t_n \end{bmatrix}$, then $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$ is a distinct solution for each $c \in \mathbb{R}$.

To prove this theorem we need to prove

- 1. For any $c \in \mathbb{R}$, $\vec{x} = \vec{s} + c(\vec{s} \vec{t})$ is a solution.
- 2. For every distinct value of c we get a unique solution.

Proof

The *i*-th equation of the system is

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i$$

Substituting

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \vec{s} + c(\vec{s} - \vec{t}) = \begin{bmatrix} s_1 + c(s_1 - t_1) \\ \vdots \\ s_n + c(s_n - t_n) \end{bmatrix}$$

into the i-th equation gives

$$a_{i1}(s_1 + c(s_1 - t_1)) + \dots + a_{in}(s_n + c(s_n - t_n)) = b_i$$

$$a_{i1}s_1 + ca_{i1}s_1 - ca_{i1}t_1 + \dots + a_{in}s_n + ca_{in}s_n - ca_{in}t_n = b_i$$

$$a_{i1}s_1 + \dots + a_{in}s_n + c(a_{i1}s_1 + \dots + a_{in}s_n) - c(a_{i1}t_1 + \dots + a_{in}t_n) = b_i$$

$$b_i + cb_i - cb_i = b_i$$

$$b_i = b_i$$

So, the *i*-th equation is satisfied when $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$.

Since this is valid for all $1 \le i \le m$, we have shown that $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$ is a solution for each $c \in \mathbb{R}$.

Solutions of Systems

If the system of linear equations

$$\begin{array}{c} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{array}$$
 has two distinct solutions $\vec{s} = \begin{bmatrix} s_1 \\ \vdots \end{bmatrix}$ and

$$\vec{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$$
, then $\vec{x} = \vec{s} + c(\vec{s} - \vec{t})$ is a distinct solution for each $c \in \mathbb{R}$.

To prove this theorem we need to prove

- 1. For any $c \in \mathbb{R}$, $\vec{x} = \vec{s} + c(\vec{s} \vec{t})$ is a solution.
- 2. For every distinct value of \boldsymbol{c} we get a unique solution.

Proof

Let $c_1,c_2\in\mathbb{R}$ with $c_1\neq c_2$ and assume that $\vec{s}+c_1(\vec{s}-\vec{t})=\vec{s}+c_2(\vec{s}-\vec{t})$. This gives

$$\vec{s} + c_1(\vec{s} - \vec{t}) = \vec{s} + c_2(\vec{s} - \vec{t})$$

 $c_1(\vec{s} - \vec{t}) = c_2(\vec{s} - \vec{t})$
 $(c_1 - c_2)(\vec{s} - \vec{t}) = \vec{0}$

Since $c_1 \neq c_2$, this implies that $\vec{s} - \vec{t} = \vec{0}$ and hence $\vec{s} = \vec{t}$.

But this contradicts our assumption that $\vec{s} \neq \vec{t}$. \square

This proves that the solution set of a system of m linear equations in n variables must either be empty, contain exactly one vector, or have infinitely many vectors in it.

Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

Solving Systems

If one analyzes the method of solving a system of linear equations by substitution and elimination (see the course notes) one notices a few things.

- 1. In each step we obtain a new system of linear equations which has the same solution set as the original.
- 2. It is only the coefficients of the variables that we modify, so we don't actually need to write down the variables each time
- 3. We only use two operations: we multiply an equation by a non-zero constant, and we add a multiple of one equation to another.

Matrix Representation of a System

Definition: Two systems of linear equations which have the same solution set are said to be equivalent.

Definition: For a system of linear equations

$$\begin{array}{lll} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\ &\vdots &= \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \end{array}$$

the coefficient matrix is defined to be the rectangular array

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

The augmented matrix of the system is

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

It is important to note that

- 1. The i-th row of the coefficient matrix contains the coefficients from the i-th equation in the system.
- 2. The j-th column of the cofficient matrix contains all the coefficients of x_j in the system.

Matrix Representation of a System

Example

Consider the system of 4 equations in 3 unknowns

$$\begin{array}{lll} 3x_1-2x_2&=4\\ 5x_1+x_2-8x_3&=16\\ \sqrt{2}x_1&-4x_3&=0\\ x_1+\frac{1}{4}x_2-x_3&=-3 \end{array}$$

The coefficient matrix of the system is $\begin{bmatrix} 3 & -2 & 0 \\ 5 & 1 & -8 \\ \sqrt{2} & 0 & -4 \\ 1 & 1/4 & -1 \end{bmatrix}$

The augmented matrix of the system is $\begin{bmatrix} 3 & -2 & 0 & | & 4 \\ 5 & 1 & -8 & | & 16 \\ \sqrt{2} & 0 & -4 & | & 0 \\ 1 & 1/4 & -1 & | & -3 \end{bmatrix} .$

Matrix Representation of a System

Notice that we can write any system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

as a vector equation

$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

The columns of the coefficient matrix of the system are the vectors $\vec{a}_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix}$ for $1 \le i \le n$.

Thus, we can denote the coefficient matrix of the system by $A = \begin{bmatrix} \vec{a}_1 & \cdots & \vec{a}_n \end{bmatrix}$.

If we let $\vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ \vec{a}_1 \end{bmatrix}$, then we can denote the augmented matrix of the system by $\begin{bmatrix} \vec{a}_1 & \cdots & \vec{a}_n & \vec{b} \end{bmatrix}$ or

sometimes simply as $A \mid \vec{b} \mid$.

Module 02 Lecture 7 Course Slides (Last Updated: November 18, 2013)

Matrix Representation of a System

Example

We may write the system of 4 equations in 3 unknowns

$$3x_1 - 2x_2 = 4$$

$$5x_1 + x_2 - 8x_3 = 16$$

$$\sqrt{2}x_1 - 4x_3 = 0$$

$$x_1 + \frac{1}{4}x_2 - x_3 = -3$$

as
$$\left[\begin{array}{cc|c} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{b} \end{array}\right]$$
 where

$$\vec{a}_1 = \begin{bmatrix} 3 \\ 5 \\ \sqrt{2} \\ 1 \end{bmatrix}, \quad \vec{a}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1/4 \end{bmatrix}, \quad \vec{a}_3 = \begin{bmatrix} 0 \\ -8 \\ -4 \\ -1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 4 \\ 16 \\ 0 \\ -3 \end{bmatrix}$$